Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Light transport regimes in slow light photonic crystal waveguides
 
research article

Light transport regimes in slow light photonic crystal waveguides

Talneau, Anne
2009
Physical Review B

The dispersive properties of waves are strongly affected by inevitable residual disorder in man-made propagating media, in particular in the slow wave regime. By a direct measurement of the dispersion curve in k space, we show that the nature of the guided modes in real photonic crystal waveguides undergoes an abrupt transition in the vicinity of a band edge. Such a transition that is not highlighted by standard optical transmission measurement, defines the limit where k can be considered as a good quantum number. In the framework of a mean-field theory we propose a qualitative description of this effect and attribute it to the transition from the “dispersive” regime to the diffusive regime. In particular we prove that a scaling law exists between the strength of the disorder and the group velocity. As a result, for group velocities vg smaller than c / 25 the diffusive contribution to the light transport is predominant. In this regime the group velocity vg loses its relevance and the energy transport velocity vis the proper light speed to consider.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Le Thomas_PhysRevB2009_80_125332_Light transport regimes in slow light photonic crystal waveguides.pdf

Access type

openaccess

Size

657.06 KB

Format

Adobe PDF

Checksum (MD5)

03ec925a13fe16f44b642a0dcc1296fe

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés