Certification Aspects of the Fast Gradient Method for Solving the Dual of Parametric Convex Programs
This paper examines the computational complexity certification of the fast gradient method for the solution of the dual of a parametric con- vex program. To this end, a lower iteration bound is derived such that for all parameters from a compact set a solution with a specified level of subop- timality will be obtained. For its practical importance, the derivation of the smallest lower iteration bound is considered. In order to determine it, we in- vestigate both the computation of the worst case minimal Euclidean distance between an initial iterate and a Lagrange multiplier and the issue of finding the largest step size for the fast gradient method. In addition, we argue that optimal preconditioning of the dual problem cannot be proven to decrease the smallest lower iteration bound. The findings of this paper are of importance in embedded optimization, for instance, in model predictive control.
journal_2011.pdf
Preprint
openaccess
326.15 KB
Adobe PDF
1ed00d788c67ea03aba3b810010f8f9a
richter_or_2011_publishers_1.pdf
Publisher's Version
restricted
311.14 KB
Adobe PDF
cc4775d1c8937df0b0516f87cea16a30