Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Computational Approach for Collapse Assessment of Concentrically Braced Frames in Seismic Regions
 
Loading...
Thumbnail Image
research article

Computational Approach for Collapse Assessment of Concentrically Braced Frames in Seismic Regions

Karamanci, Emre
•
Lignos, Dimitrios  
2014
Journal of Structural Engineering

This paper proposes a computational approach for the collapse assessment of concentrically braced frames (CBFs) subjected to earthquakes. Empirical formulations for modeling the postbuckling behavior and fracture of three main steel brace shapes that are commonly used in CBFs are developed. These formulations are based on extensive calibrations of a fiber-based steel brace model with available information from a recently developed steel brace database. As part of the same computational approach, the representation of strength and stiffness deterioration associated with plastic hinging in steel columns and gusset-plate beam-to-column connections is considered. Through a case study of a 12-story Special Concentrically Braced Frame (SCBF), the influence of classical damping on the collapse capacity of CBFs is investigated. It is demonstrated that when SCBFs attain a negative stiffness during an earthquake, their collapse capacity can be significantly overestimated, if viscous damping is based on a commonly employed Rayleigh assumption with initial stiffness approximation. It is shown that sidesway collapse of CBFs should be traced based on a combination of criteria that associate large story drift ratios and the story shear resistance of a CBF at the corresponding story drift ratios. © 2014 American Society of Civil Engineers.

  • Details
  • Metrics
Type
research article
DOI
10.1061/(ASCE)ST.1943-541X.0001011
Author(s)
Karamanci, Emre
•
Lignos, Dimitrios  
Date Issued

2014

Published in
Journal of Structural Engineering
Volume

140

Issue

8

Article Number

A4014019

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
RESSLAB  
Available on Infoscience
February 1, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/122914
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés