Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Quantum Mechanical Study of the Germanium Electron-Hole Bilayer Tunnel FET
 
Loading...
Thumbnail Image
research article

Quantum Mechanical Study of the Germanium Electron-Hole Bilayer Tunnel FET

Alper, Cem  
•
Lattanzio, Livio  
•
De Michielis, Luca  
Show more
2013
IEEE Transactions on Electron Devices

The electron-hole bilayer tunnel field-effect transistor (EHBTFET) is an electronic switch that uses 2-D-2-D sub-band-to-sub-band tunneling (BTBT) between electron and hole inversion layers and shows significant subthermal swing over several decades of current due to the step-like 2-D density of states behavior. In this paper, EHBTFET has been simulated using a quantum mechanical model. The model results are compared against transactions on computer-aided design simulations and remarkable differences show the importance of quantum effects and dimensionality in this device. Ge EHBTFET with channel thickness of 10 nm results as a promising device for low supply voltage, subthreshold logic applications, with a super steep switching behavior featuring SSavg similar to 40 mV/dec up to V-DD. Furthermore, it has been demonstrated that high ON current levels (similar to 40 mu A/mu m) can be achieved due to the transition from phonon-assisted BTBT to direct BTBT at higher biases.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TED.2013.2274198
Web of Science ID

WOS:000323640300008

Author(s)
Alper, Cem  
•
Lattanzio, Livio  
•
De Michielis, Luca  
•
Palestri, Pierpaolo
•
Selmi, Luca
•
Ionescu, Adrian Mihai  
Date Issued

2013

Publisher

Ieee-Inst Electrical Electronics Engineers Inc

Published in
IEEE Transactions on Electron Devices
Volume

60

Issue

9

Start page

2754

End page

2760

Subjects

2-D-2-D tunneling

•

band-to-band tunneling (BTBT)

•

density of states (DOS)

•

electron-hole bilayer tunnel field-effect transistor (EHBTFET)

•

germanium

•

quantum mechanical (QM) simulation

•

subthreshold slope

•

tunnel field-effect transistor (TFET)

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
NANOLAB  
Available on Infoscience
September 18, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/94679
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés