Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Influence of substrate additives on the mechanical properties of ultrathin oxide coatings on poly(ethylene terephthalate)
 
research article

Influence of substrate additives on the mechanical properties of ultrathin oxide coatings on poly(ethylene terephthalate)

Rochat, G.  
•
Leterrier, Y.  
•
Fayet, P.
Show more
2005
Surface and Coatings Technology

The mechanical properties of ultrathin silicon oxide (SiOx ) coatings plasma-deposited on poly(ethylene terephthalate) (PET) films were investigated with particular attention paid to the effect of additives located in the superficial layers of the polymer substrate. The cohesive and adhesive properties of the thin oxide coating were derived from the analysis of fragmentation tests carried out in situ in a scanning electron microscope. The cohesive strength of the coating was determined assuming a Weibull probability of failure of the oxide, and the coating/substrate interfacial shear strength (IFSS) was calculated by means of a stress transfer analysis with a perfectly plastic interface. It was shown that the presence of additives in the superficial layers of PET substrates leads to a 20% decrease of the crack onset strain, which is due to an increase of the coating defect density, as revealed by means of atomic oxygen etching. The stress concentration induced by coating microdefects was modeled, and was shown to induce a decrease in the cohesive properties of the coating, which correlates with the observed decrease of crack onset strain. Moreover, the adhesion was found to be very high, with a IFSS higher than the substrate bulk shear stress at yield, irrespective of the presence of additives.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SiOx_PET_Chem Add.pdf

Access type

openaccess

Size

319.77 KB

Format

Adobe PDF

Checksum (MD5)

68700a92936b8366002272f5bda35552

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés