Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Variable stars in galactic globular clusters I. The population of RR Lyrae stars
 
research article

Variable stars in galactic globular clusters I. The population of RR Lyrae stars

Reyes, Mauricio Cruz  
•
Anderson, Richard Irving  
•
Johansson, Lucas
Show more
April 19, 2024
Astronomy & Astrophysics

We present a comprehensive catalog of 2824 RR Lyrae stars (RRLs) residing in 115 Galactic globular clusters (GCs). Our catalog includes 1594 fundamental-mode (RRab), 824 first-overtone (RRc), and 28 double-mode (RRd) RRLs, as well as 378 RRLs of an unknown pulsation mode. We cross-matched 481 349 RRLs reported in the third Data Release (DR3) of the ESA mission Gaia and the literature to 170 known GCs. Membership probabilities were computed as the products of a position and shape-dependent prior and a likelihood was computed using parallaxes, proper motions, and, where available, radial velocities from Gaia. Membership likelihoods of RRLs were computed by comparing cluster average parameters based on known member stars and the cross-matched RRLs. We determined empirical RRL instability strip (IS) boundaries based on our catalog and detected three new cluster RRLs inside this region via their excess Gaia G-band photometric uncertainties. We find that 77% of RRLs in GCs are included in the Gaia DR3 Specific Object Study, and 82% were classified as RRLs by the Gaia DR3 classifier, with the majority of the missing sources being located at the crowded GC centers. Surprisingly, we find that 25% of cluster member stars located within the empirical IS are not RRLs and appear to be non-variable. Additionally, we find that 80% of RRab, 84% of RRc, and 100% of the RRd stars are located within theoretical IS boundaries predicted using MESA models with Z = 0.0003, M = 0.7 M-circle dot, and Y = 0.290. Unexpectedly, a higher Y = 0.357 is required to fully match the location of RRc stars, and lower Y = 0.220 is needed to match the location of RRab stars. Lastly, our catalog does not exhibit an Oosterhoff dichotomy, with at least 22 GCs located inside the Oosterhoff "gap", which is close to the mode of the distribution of mean RRL periods in GCs.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

aa48961-23.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

42.24 MB

Format

Adobe PDF

Checksum (MD5)

033fa50ec65376b3dc95f8a7d4d71ee9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés