Generalized bloch equations for optical interactions in confined geometries
By combining the field-susceptibility technique with the optical Bloch equations, a general formalism is developed for the investigation of molecular photophysical phenomena triggered by nanometer scale optical fields in the presence of complex environments. This formalism illustrate the influence of the illumination regime on the fluorescence signal emitted by a single molecule in a complex environment. In the saturated case, this signal is proportional to the optical local density of states, while it is proportional to the near-field intensity in the non-saturated case. (C) 2005 Elsevier B.V. All rights reserved.
070.pdf
openaccess
185.66 KB
Adobe PDF
03b80df31ac47d965fb588c1206ca6e3