Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Parallel Evolutionary Algorithm to Optimize Dynamic Data Types in Embedded Systems
 
research article

A Parallel Evolutionary Algorithm to Optimize Dynamic Data Types in Embedded Systems

Risco-Martin, Jose L.
•
Atienza, David  
•
Hidalgo, Jose I.
Show more
2008
Soft Computing Journal

New multimedia embedded applications are increasingly dynamic, and rely on dynamically-allocated data types (DDTs) to store their data. The optimization of DDTs for each target embedded system is a time-consuming process due to the large searching space of possible DDTs implementations. That implies the minimization of embedded design variables (memory accesses, power consumption and memory usage). Up to know, some very effective heuristic algorithms have been developed in order to solve this problem, but it is unknown how good the selected DDTs are since the problem is NP-complete and cannot be fully explored. In these cases the use of parallel processing can be very useful because it allows not only to explore more solutions spending the same time, but also to implement new algorithms. This paper describes several parallel evolutionary algorithms for DDTs optimization in Embedded Systems, where parallelism improves the solutions found by the corresponding sequential algorithm, which indeed is quite effective compared with other previously proposed procedures. Experimental results show how a novel parallel multi-objective genetic algorithm, which combines NSGA-II and SPEA2, allows designers to reach a larger number of solutions than previous approximations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SoftComputing2008.pdf

Access type

openaccess

Size

529.12 KB

Format

Adobe PDF

Checksum (MD5)

1798b11f9245f842b4996fb43d4acb33

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés