Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Molecular characterization and rheological properties of modified poly(ethylene terephthalate) obtained by reactive extrusion
 
research article

Molecular characterization and rheological properties of modified poly(ethylene terephthalate) obtained by reactive extrusion

Japon, S.
•
Luciani, A.
•
Nguyen, Q. T.  
Show more
2001
Polymer Engineering and Science

The use of a tetrafunctional epoxy-based additive to modify the molecular structure of poly(ethylene terephthalate) (PET) was investigated with the aim of producing PET foams by an extrusion process. The molecular structure analysis and shear and elongation rheological characterization showed that branched PET is obtained for 0.2, 0.3 and 0.4 wt% of a tetrafunctional epoxy additive. Gel permeation chromatography (GPC) analysis led to the conclusion that a randomly branched structure is obtained, the structure being independent of the modifier concentration. The evolution of shear and extensional behavior as a function of molecular weight (Mw), degree of branching, and molecular weight distribution (MWD) were studied, and it is shown that an increase in the degree of branching and Mw and the broadening of the MWD induce an increase in Newtonian viscosity, relaxation time, flow activation energy and transient extensional viscosity, while the shear thinning onset and the Hencky strain at the fiber break decrease markedly.

  • Details
  • Metrics
Type
research article
DOI
10.1002/pen.10830
Web of Science ID

WOS:000170737800001

Author(s)
Japon, S.
Luciani, A.
Nguyen, Q. T.  
Leterrier, Y.  
Månson, J.-A. E.  
Date Issued

2001

Published in
Polymer Engineering and Science
Volume

41

Issue

8

Start page

1299

End page

1309

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LTC  
Available on Infoscience
June 26, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/232276
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés