Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Progression towards high efficiency perovskite solar cells via optimisation of the front electrode and blocking layer
 
research article

Progression towards high efficiency perovskite solar cells via optimisation of the front electrode and blocking layer

Yates, Heather M.
•
Afzaal, Mohammad
•
Walter, Arnaud  
Show more
2016
Journal of Materials Chemistry C

The effects of a fluorine doped tin oxide (FTO) electrode, titanium dioxide (TiO2-x) blocking layer (BL) and perovskite (methyl ammonium lead triiodide) preparation on the overall properties of the photovoltaic cells have been studied. The FTO electrode was deposited by atmospheric pressure chemical vapour deposition (APCVD) and the hole blocking layer by spin coating, atomic layer deposition (ALD) or sputtering. We have shown the importance of obtaining uniform thin films of FTO, with low sheet resistance to aid the formation of pin hole free uniform TiO2-x, blocking layers and hence well adhered, perovskite layers. The optimal BL thickness was 20 nm, while thicker films gave decreased shunt resistance and thinner a greater number of pin holes through the layers. We also showed that the conformal nature of ALD and magnetron sputtering, along with their increased uniformity control over spin coating again improved cell efficiency. The main improvement comes for the smaller R-oc. attributed to an improved electrical transport through particularly the sputtered TiO2-x blocking layer. After identifying the optimised parameters, all the properties were combined to fabricate large solar cells (1 cm(2)) yielding power conversion efficiencies beyond 16%.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper_862.pdf

Access type

openaccess

Size

2.12 MB

Format

Adobe PDF

Checksum (MD5)

c28705893438a451309a532b3d3f58f1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés