Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Effects of crab burrows on pore water flows in salt marshes
 
research article

Effects of crab burrows on pore water flows in salt marshes

Xin, P.
•
Jin, G.
•
Li, L.
Show more
2009
Advances in water Resources

Macro-pores such as crab burrows are found commonly distributed in salt marsh sediments. Their disturbance on the soil structure is likely to influence both pore water flows and solute transport in salt marshes; however, the effects of crab burrows are not well understood. Here, a three-dimensional model simulated tidally driven pore water flows subject to the influence of crab burrows in a marsh system. The model, based on Richards’ equation, considered variably saturated flow in the marsh with a two-layer soil configuration, as observed at the Chongming Dongtan wetland (Shanghai, China). The simulation results showed that crab burrows distributed in the upper low- permeability soil layer, acting as preferential flow paths, affected pore water flows in the marsh particularly when the contrast of hydraulic conductivity between the lower high-permeability soil layer and the overlying low- permeability soils was high. The burrows were found to increase the volume of tidally driven water exchange between the marsh soil and the tidal creek. The simulations also showed improvement of soil aeration conditions in the presence of crab burrows. These effects may lead to increased productivity of the marsh ecosystem and enhancement of its material exchange with coastal waters.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

crab burrows.pdf

Access type

openaccess

Size

1.64 MB

Format

Adobe PDF

Checksum (MD5)

3abc92025035c004e5834eeab8bd66f8

Loading...
Thumbnail Image
Name

jp159.pdf

Access type

restricted

Size

1.02 MB

Format

Adobe PDF

Checksum (MD5)

ca6f4219de2cdfd864e6b4b50fc517ad

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés