Electron relaxation by LO phonons in quantum wires: An adiabatic approach
The electron states of weakly-one-dimensional quantum wires are computed using the adiabatic approximation in the framework of the k . p theory and the envelope-function approximation. The computed transition rates of electrons from one confined state to any other, mediated by the longitudinal optical (LO) phonons, are clearly ordered with respect to the quantum numbers of the states provided by the adiabatic approximation. The average single electron relaxation time from an excited level is shown to either increase or surprisingly decrease as a function of initial energy. Finally, the relaxation dynamics of an excited population of electrons is analyzed. We show that a fast phenomenological intrasubband thermalization, simultaneous to the LO phonon-mediated relaxation, lowers the final average energy and may in some cases significantly speed up the whole relaxation.
WOS:A1997WF12400067
1997
55
4
2420
2428
Swiss fed inst technol,dept phys,inst micro & optoelect,ch-1015 lausanne,switzerland. tech univ munich,walter schottky inst,d-85748 garching,germany. Amman, C, UNIV LAUSANNE,INST THEORET PHYS,CH-1015 LAUSANNE,SWITZERLAND.
ISI Document Delivery No.: WF124
Cited Reference Count: 48
Cited References:
AKIYAMA H, 1994, PHYS REV LETT, V72, P924
BASTARD G, 1990, WAVE MECH APPL SEMIC
BASTARD G, 1991, SOLID STATE PHYS, V44, P229
BENNETT CR, 1995, J PHYS-CONDENS MAT, V7, P9819
BOCKELMANN U, 1990, PHYS REV B, V42, P8947
BRIGGS S, 1988, PHYS REV B, V38, P8163
BRIGGS S, 1989, PHYS REV B, V40, P12001
BRIGGS S, 1991, PHYS REV B, V43, P4785
CAMPOS VB, 1992, PHYS REV B, V45, P3898
CAMPOS VB, 1992, PHYS REV B, V46, P3849
CINGOLANI R, 1991, PHYS REV LETT, V67, P891
FERREIRA R, 1989, PHYS REV B, V40, P1074
FOREMAN BA, 1995, PHYS REV B, V52, P12260
GRUNDMANN M, 1994, SEMICOND SCI TECH S, V9, P1939
HAACKE S, 1996, SOLID STATE ELECTRON, V40, P299
HARTIG M, UNPUB
JIANG W, 1993, J APPL PHYS, V74, P1652
JIANG W, 1993, J APPL PHYS, V74, P2097
JOVANOVIC D, 1993, PHYS REV B, V42, P11108
KAPON E, 1989, PHYS REV LETT, V63, P430
KIENER C, 1996, PHYS REV B, V53, R4225
KIM KW, 1991, J APPL PHYS, V70, P319
KNIPP PA, 1992, PHYS REV B, V45, P9091
KNIPP PA, 1995, PHYS REV B, V52, P5923
LEBURTON JP, 1984, J APPL PHYS, V56, P2850
LEBURTON JP, 1992, PHYS REV B, V45, P11022
LEBURTON JP, 1993, J APPL PHYS, V74, P1417
MACIEL AC, 1995, APPL PHYS LETT, V66, P3039
MICKEVICIUS R, 1995, J APPL PHYS, V77, P5095
OBERLI DY, 1995, IL NUOVO CIMENTO D, V17, P1641
REN SF, 1991, PHYS REV B, V43, P11857
RIDDOCH FA, 1984, SURF SCI, V142, P260
ROSSI F, 1993, PHYS REV B, V47, P1695
ROTA L, 1993, PHYS REV B, V47, P1632
ROTA L, 1994, EUROPHYS LETT, V28, P277
ROTA L, 1995, PHYS REV B, V52, P5183
SAKAKI H, 1980, JPN J APPL PHYS, V19, L735
SAKAKI H, 1992, SURF SCI, V267, P623
SENNA JR, 1993, PHYS REV B, V48, P4552
STROSCIO MA, 1989, PHYS REV B, V40, P6428
STROSCIO MA, 1991, PHYS REV B, V42, P1488
TATHAM MC, 1989, PHYS REV LETT, V63, P1637
TURNER K, 1995, APPL PHYS LETT, V66, P3188
VURGAFTMAN I, 1993, APPL PHYS LETT, V62, P2251
VURGAFTMAN I, 1994, PHYS REV B, V50, P14309
YAMADA T, 1989, PHYS REV B, V40, P6265
YU SG, 1995, PHYS REV B, V51, P4695
ZHU BF, 1991, PHYS REV B, V44, P1926
REVIEWED