Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Computational models of episodic-like memory in food-caching birds
 
Loading...
Thumbnail Image
research article

Computational models of episodic-like memory in food-caching birds

Brea, Johanni  
•
Clayton, Nicola S.
•
Gerstner, Wulfram  
May 23, 2023
Nature Communications

How the 'what', 'where', and 'when' of past experiences are stored in episodic memories and retrieved for suitable decisions remains unclear. In an effort to address these questions, the authors present computational models of neural networks that behave like food caching birds in episodic memory tasks.

Birds of the crow family adapt food-caching strategies to anticipated needs at the time of cache recovery and rely on memory of the what, where and when of previous caching events to recover their hidden food. It is unclear if this behavior can be explained by simple associative learning or if it relies on higher cognitive processes like mental time-travel. We present a computational model and propose a neural implementation of food-caching behavior. The model has hunger variables for motivational control, reward-modulated update of retrieval and caching policies and an associative neural network for remembering caching events with a memory consolidation mechanism for flexible decoding of the age of a memory. Our methodology of formalizing experimental protocols is transferable to other domains and facilitates model evaluation and experiment design. Here, we show that memory-augmented, associative reinforcement learning without mental time-travel is sufficient to explain the results of 28 behavioral experiments with food-caching birds.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41467-023-38570-x.pdf

Type

Publisher's Version

Access type

openaccess

License Condition

CC BY

Size

1.37 MB

Format

Adobe PDF

Checksum (MD5)

1686599b797f437f3b6dce89f6b260b7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés