Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization
 
conference paper

Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization

Amarù, Luca
•
Gaillardon, Pierre-Emmanuel
•
De Micheli, Giovanni  
2014
Proceedings of the 51st Design Automation Conference (DAC)
51st Design Automation Conference (DAC)

In this paper, we present Majority-Inverter Graph (MIG), a novel logic representation structure for efficient optimization of Boolean functions. An MIG is a directed acyclic graph consisting of three-input majority nodes and regular/complemented edges. We show that MIGs include any AND/OR/Inverter Graphs (AOIGs), containing also the well- known AIGs. In order to support the natural manipulation of MIGs, we introduce a new Boolean algebra, based exclusively on majority and inverter operations, with a complete axiomatic system. Theoretical results show that it is possible to explore the entire MIG representation space by using only five primitive transformation rules. Such feature opens up a great opportunity for logic optimization and synthesis. We showcase the MIG potential by proposing a delay-oriented optimization technique. Experimental results over MCNC benchmarks show that MIG optimization reduces the number of logic levels by 18%, on average, with respect to AIG optimization performed by ABC academic tool. Employed in a traditional optimization-mapping circuit synthesis flow, MIG optimization enables an average reduction of {22%, 14%, 11%} in the estimated {delay, area, power} metrics, before physical design, as compared to academic/commercial synthesis flows.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PID3143501.pdf

Access type

openaccess

Size

181.63 KB

Format

Adobe PDF

Checksum (MD5)

1deeab3b4f03f5070cf64723c4256a8e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés