DARTS-NETGAB: DESIGN AUTOMATION AND REAL-TIME SIMULATION USING NEURAL NETWORKS ENSEMBLES FOR TURBOCOMPRESSORS ON GAS-BEARINGS
In the domain of engineering design, where efficiency in simulation and precision in modeling are paramount, this study introduces DARTS-NETGAB, a pioneering platform uniquely designed for real-time simulation and automated design. Specifically tailored for gas-bearing supported turbocompressors, DARTS-NETGAB integrates neural network ensembles with a parametric CAD construction library to deliver unprecedented prediction speeds and modeling precision across various engineering systems. This integration allows for seamless, real-time performance evaluations of complex, multidisciplinary systems and automated CAD model generation. This framework streamlines the design process, reduces cycles times and enhances adaptability to manufacturing imperfection. DARTS-NETGAB features a user-centric interface developed using the advanced Panel-Bokeh Python libraries, facilitating dynamic and interactive design modifications directly within a web browser. This capability enables immediate visualization and adjustment of a comprehensive turbocompressor model, thereby streamlining the transition from theoretical design to practical application. The paper details how the combination of DARTS-NETGAB’s rapid, accurate predictive capabilities with its robust design tools not only advances micro-turbocompressor design but also revolutionizes engineering processes across diverse systems. By merging cutting-edge computational techniques with practical, user-friendly tools, DARTS-NETGAB offers a significant improvement over traditional methods, fostering more efficient and innovative engineering solutions.
2-s2.0-85210093346
2024
9780791888377
3B-2024
v03bt00a054
REVIEWED
EPFL
Event name | Event acronym | Event place | Event date |
Washington, United States | 2024-08-25 - 2024-08-28 | ||