Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Fixed-order Controller Design for State Space Polytopic Systems by Convex Optimization
 
conference paper

Fixed-order Controller Design for State Space Polytopic Systems by Convex Optimization

Karimi, Alireza  
•
Sadabadi, Mahdieh
2013
IFAC Proceedings Volumes
IFAC Joint Conference

In this paper, a new method for fixed-order controller design of systems with polytopic uncertainty in their state space representation is proposed. The approach uses the strictly positive realness (SPRness) of some transfer functions, as a tool to decouple the controller parameters and the Lyapunov matrices and represent the stability conditions and the performance criteria by a set of linear matrix inequalities. The quality of this convex approximation depends on the choice of a central state matrix. It is shown that this central matrix can be computed from a set of initial fixed-order controllers computed for each vertex of the polytope. The stability of the closed-loop polytopic system is guaranteed by a linear parameter dependent Lyapunov matrix. The results are extended to fixed-order H infinity controller design for SISO systems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

CDC12_1728_MS.pdf

Access type

openaccess

Size

349.84 KB

Format

Adobe PDF

Checksum (MD5)

aa6bad94764b6cf01e38d575597fc4e9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés