Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Use of Transient Measurements for Static Real-Time Optimization
 
conference paper

Use of Transient Measurements for Static Real-Time Optimization

De Avila Ferreira, Tafarel  
•
François, Grégory  
•
Marchetti, Alejandro Gabriel  
Show more
2017
IFAC-PapersOnLine
20th IFAC World Congress

Modifier adaptation (MA) is a real-time optimization (RTO) method characterized by its ability to enforce plant optimality upon convergence despite the presence of model uncertainty. The approach is based on correcting the available model using gradient estimates computed at each iteration. MA uses steady-state measurements and solves a static optimization problem. Hence, after every input change, one typically waits for the plant to reach steady state before measurements are taken. With many iterations, this can make convergence to the plant optimum rather slow. Recently, an approach that uses transient measurements for steady-state MA has been proposed. This way, plant optimality can be reached in a single transient operation. This paper proposes to improve this approach by using a dynamic model to process transient measurements for gradient computations. The approach is illustrated through the simulated example of a CSTR. Furthermore, the proposed method is less dependent on the choice of the RTO period. The time needed to reach plant optimality is of the order of the plant settling time, whereas several transitions to steady state would have been necessary using the standard static MA scheme.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

RTO_online_RTO_transient.pdf

Access type

openaccess

Size

748.52 KB

Format

Adobe PDF

Checksum (MD5)

9cb8e2b982822160edb86f03c45dd970

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés