Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A new spatial count data model with Bayesian additive regression trees for accident hot spot identification
 
research article

A new spatial count data model with Bayesian additive regression trees for accident hot spot identification

Krueger, Rico  
•
Bansal, Prateek
•
Buddhavarapu, Prasad
September 1, 2020
Accident Analysis And Prevention

The identification of accident hot spots is a central task of road safety management. Bayesian count data models have emerged as the workhorse method for producing probabilistic rankings of hazardous sites in road networks. Typically, these methods assume simple linear link function specifications, which, however, limit the predictive power of a model. Furthermore, extensive specification searches are precluded by complex model structures arising from the need to account for unobserved heterogeneity and spatial correlations. Modern machine learning (ML) methods offer ways to automate the specification of the link function. However, these methods do not capture estimation uncertainty, and it is also difficult to incorporate spatial correlations. In light of these gaps in the literature, this paper proposes a new spatial negative binomial model which uses Bayesian additive regression trees to endogenously select the specification of the link function. Posterior inference in the proposed model is made feasible with the help of the Polya-Gamma data augmentation technique. We test the performance of this new model on a crash count data set from a metropolitan highway network. The empirical results show that the proposed model performs at least as well as a baseline spatial count data model with random parameters in terms of goodness of fit and site ranking ability.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S0001457520306680-main.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

3.7 MB

Format

Adobe PDF

Checksum (MD5)

4381c7beab677432323e033b27c1291f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés