Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Scalable cascaded snap-in actuators for large-stroke displacements
 
conference paper

Scalable cascaded snap-in actuators for large-stroke displacements

Golay, N.  
•
Masse, A.
•
Pétremand, Y.  
Show more
2009
Proceedings of Transducers 2009
Transducers 2009

This paper will focus on the design, and first measurements of a cascaded in-plane parallel plate snap-in actuator. The actuator is based on a rather simple microfabrication process and can achieve a total displacement of several tenths of microns. Compared to classical noncascaded transducer device based on parallel plates or comb-drive actuator, the actuation voltage is relatively low due to the snap-in phenomenon of electrostatic actuators. The electromechanical response of such a device is sequential. The fabricated 4-stage device shows a total stroke of 75 μm at 60 V. It is possible to easily increase the total stroke of the actuator by increasing the number of stages. Only one input electrode is required. Simulations with CoventorWare showed easy scalability of the concept for up to 19 stages with a total displacement of 350 μm.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés