Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Flexural strength of micron-scale plate-like silicon in aluminum
 
conference presentation

Flexural strength of micron-scale plate-like silicon in aluminum

Mueller, Martin Guillermo  
•
Zagar, Goran  
•
Fornabaio, Marta  
Show more
2015
9th European Solid Mechanics Conference

Mechanical properties of composite materials and alloys are strongly influenced by the intrinsic mechanical properties of the reinforcing phases they contain; however, due to the irregular shape and small size of particulate reinforcements, measuring their intrinsic properties is a substantial methodological challenge. Here we present a method with which we probe the local flexural strength of individual microscopic plate-like silicon particles, which constitute, together with aluminium, the eutectic microconstituent in AlSi alloys. Silicon particles are extracted from the cast and heat-treated alloy by deep-etching the aluminium matrix. The plates are then are dispersed on a steel substrate, where irregular plate- like particles rest lying on one of their large flat facets. A beam of well-defined dimensions is micro-machined out of individual particles using focused ion beam (FIB) milling perpendicular to the substrate. In this way, the particle surface which is in contact with the substrate and that will later on be subjected to tension upon beam bending, i.e. where strength will be measured, is not affected by the FIB nor by redeposition. The FIB is also used to produce a hole in the steel substrate nearby the micro-machined beam so that the silicon beam can be transported and placed on top of the hole using a micromanipulator. The beam is tested in 3- or 4-point bending until fracture by applying a force with a nanoindenter equipped with a diamond tip featuring one or two small rounded ridges that are longer than the width of the beam. Fractography is carried out after testing to locate and characterize the fracture initiation point. Test results are coupled with Finite Element simulations for interpretation. Error in the measurement, including the influence of possible misalignments, of the measured strength is evaluated.

  • Details
  • Metrics
Type
conference presentation
Author(s)
Mueller, Martin Guillermo  
Zagar, Goran  
Fornabaio, Marta  
Mortensen, Andreas  
Date Issued

2015

Written at

OTHER

EPFL units
LMM  
Event nameEvent placeEvent date
9th European Solid Mechanics Conference

Madrid, Spain

6 - 10 July 2015

Available on Infoscience
July 16, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/116302
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés