Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optical properties of GaN epilayers and GaN/AlGaN quantum wells grown by molecular beam epitaxy on GaN(0001) single crystal substrate
 
Loading...
Thumbnail Image
research article

Optical properties of GaN epilayers and GaN/AlGaN quantum wells grown by molecular beam epitaxy on GaN(0001) single crystal substrate

Grandjean, N.  
•
Damilano, B.
•
Massies, J.
Show more
2000
Journal of Applied Physics

GaN epilayers and GaN/AlGaN quantum wells (QWs) were grown by molecular beam epitaxy on GaN(0001) single crystal substrates. Transmission electron microscopy (TEM) was used to assess the crystal quality of the homoepitaxial layers. A dislocation density of less than 10(5) cm(-2) is deduced from TEM imaging. Low temperature (1.8 K) photoluminescence (PL) of homoepitaxial GaN reveals PL linewidths as low as 0.3 meV for bound excitons. The PL integrated intensity variation between 10 and 300 K is compared to that observed on a typical heteroepitaxial GaN/Al2O3 layer. A 2 nm thick GaN/Al0.1Ga0.9N QW has been studied by time-resolved and continuous wave PL. The decay time is close to a purely radiative decay, as expected for a low defect density. Finally, the built-in polarization field measured in a homoepitaxial QW is shown to be comparable to that measured on heteroepitaxial QWs grown either on sapphire or silicon substrates. (C) 2000 American Institute of Physics. [S0021-8979(00)07513- 7].

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés