Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Fully Inkjet-Printed Parallel-Plate Capacitive Gas Sensors on Flexible Substrate
 
conference paper

Fully Inkjet-Printed Parallel-Plate Capacitive Gas Sensors on Flexible Substrate

Molina-Lopez, Francisco
•
Smolander, Maria
•
Briand, Danick  
Show more
2012
Proceedings of IEEE Sensors 2012
IEEE Sensors 2012

Small fully inkjet-printed gas sensors based on capacitive parallel-plate (PP) structures have been realized on flexible plastic foil and characterized. A gas sensing layer was inkjet-printed between inkjet-printed bottom and top silver electrodes. Compared with comb electrode (CE) geometries, PP structures drastically reduce the developing complexity of gas sensors on polymeric foil, avoiding the substrate parasitic signal. Furthermore, the use of porous inkjet-printed metal makes the patterning of complex grids on the top electrode unnecessary, since such porosity permits the analyte to flow into the sensing layer. This low demanding patterning resolution facilitates the miniaturization of the inkjet-printed sensors, introducing significant improvements in their sensing performances, such as sensitivity or response time. The printed sensing devices were characterized against pulses of relative humidity (R.H.) and their performances were analyzed.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés