Radical-free hyperpolarized MRI using endogenously occurring pyruvate analogues and UV-induced nonpersistent radicals
It was recently demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with UV light, enabling radical-free dissolution dynamic nuclear polarization. Although pyruvate is endogenous, the presence of pyruvate may interfere with metabolic processes or the detection of pyruvate as a metabolic product, making it potentially unsuitable as a polarizing agent. Therefore, the aim of the current study was to characterize solutions containing endogenously occurring alternatives to pyruvate as UV-induced nonpersistent radical precursors for in vivo hyperpolarized MRI. The metabolites alpha-ketovalerate (alpha kV) and alpha-ketobutyrate (alpha kB) are analogues of pyruvate and were chosen as potential radical precursors. Sample formulations containing alpha kV and alpha kB were studied with UV-visible spectroscopy, irradiated with UV light, and their nonpersistent radical yields were quantified with electron spin resonance and compared with pyruvate. The addition of C-13-labeled substrates to the sample matrix altered the radical yield of the precursors. Using alpha kB increased the C-13-labeled glucose liquid-state polarization to 16.3% +/- 1.3% compared with 13.3% +/- 1.5% obtained with pyruvate, and 8.9% +/- 2.1% with alpha kV. For [1-C-13]butyric acid, polarization levels of 12.1% +/- 1.1% for alpha kV, 12.9% +/- 1.7% for alpha kB, 1.5% +/- 0.2% for OX063 and 18.7% +/- 0.7% for Finland trityl, were achieved. Hyperpolarized [1-C-13]butyrate metabolism in the heart revealed label incorporation into [1-C-13]acetylcarnitine, [1-C-13]acetoacetate, [1-C-13]butyrylcarnitine, [5-C-13]glutamate and [5-C-13]citrate. This study demonstrates the potential of alpha kV and alpha kB as endogenous polarizing agents for in vivo radical-free hyperpolarized MRI. UV-induced, nonpersistent radicals generated in endogenous metabolites enable high polarization without requiring radical filtration, thus simplifying the quality-control tests in clinical applications.
WOS:000671577200001
2021-07-10
e4584
REVIEWED