Local discontinuous Galerkin methods for fractional diffusion equations
We consider the development and analysis of local discontinuous Galerkin methods for fractional diffusion problems in one space dimension, characterized by having fractional derivatives, parameterized by beta in [1,2]. After demonstrating that a classic approach fails to deliver optimal order of convergence, we introduce a modified local numerical flux which exhibits optimal order of convergence O(h^(k+1)) uniformly across the continuous range between pure advection (beta=1) and pure diffusion (beta=2). In the two classic limits, known schemes are recovered. We discuss stability and present an error analysis for the space semi-discretized scheme, which is supported through a few examples.
M2AN472013.pdf
Publisher's Version
openaccess
294.06 KB
Adobe PDF
56d20ee03828b3ba8f62eb106bacbc35