Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Stochastic fault detection in a plug-and-play scenario
 
conference paper

Stochastic fault detection in a plug-and-play scenario

Boem, F.
•
Riverso, S.
•
Ferrari-Trecate, G.
Show more
2015
Proc. 54th IEEE Conference on Decision and Control

This paper proposes a novel stochastic Fault Detection (FD) approach for the monitoring of Large-Scale Systems (LSSs) in a Plug-and-Play (PnP) dynamic scenario. The proposed architecture considers stochastic bounds on the measurement noises and modeling uncertainties, providing stochastic time-varying FD thresholds with guaranteed false alarms probability levels. The monitored LSS consists of several interconnected subsystems and the designed FD architecture is able to manage plugging-in of novel subsystems and un-plugging of existing ones. Moreover, the proposed PnP approach performs the unplugging of faulty subsystems in order to avoid the propagation of faults in the interconnected LSS. Analogously, once the issue has been solved, the disconnected subsystem can be re-plugged-in. The reconfiguration processes involve only local operations of neighboring subsystems, thus allowing a distributed architecture. A consensus approach is used for the estimation of variables shared among more than one subsystem; a method is proposed to define the time-varying consensus weights in order to allow PnP operations and to minimize at each step the variance of the uncertainty of the FD thresholds. Simulation results on a Power Network System application show the effectiveness of the proposed approach.

  • Details
  • Metrics
Type
conference paper
DOI
10.1109/CDC.2015.7402689
Author(s)
Boem, F.
Riverso, S.
Ferrari-Trecate, G.
Parisini, T.
Date Issued

2015

Published in
Proc. 54th IEEE Conference on Decision and Control
Start page

3137

End page

3142

Note

Osaka, Japan, December 15-18

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SCI-STI-GFT  
Available on Infoscience
January 10, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/132556
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés