Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Nuclear Spin Relaxation Parameters of MRI Contrast Agents – Insight from Quantum Mechanical Calculations
 
review article

Nuclear Spin Relaxation Parameters of MRI Contrast Agents – Insight from Quantum Mechanical Calculations

Yazyev, Oleg V.  
•
Helm, Lothar  
2008
European Journal of Inorganic Chemistry

Nuclear magnetic relaxation in the presence of paramagnetic centres has gained increasing interest in recent years partly due to its importance for contrast agents in magnetic resonance imaging. Rational design of new more efficient agents is possible as a result of a better understanding of the underlying relaxation mechanisms. Quantum chemical calculations together with molecular dynamics simulations allow obtaining fundamental parameters such as quadrupole coupling constants and hyperfine interaction tensors directly at a molecular level. Recent results are presented on gadolinium(III) ions in aqueous solution and on [Gd(DOTA)(H2O)]–, a commercial MRI contrast agent. Isotropic hyperfine coupling constants can be calculated for 17O and 1H nuclear spins of water molecules in the first and second coordination sphere of Gd3+. It is also shown that the commonly used point-dipole approximation for the dipolar interaction between the electron and the nuclear spin is in general valid for 1H spin but not for the directly bound 17O spin. The calculated quadrupole coupling parameters allow a direct determination of the rotational correlation time of complexes from the 17O nuclear spin relaxation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EurJInorgChem08-201.pdf

Access type

openaccess

Size

508.37 KB

Format

Adobe PDF

Checksum (MD5)

325dc9e6551392f8d014b7c24fe17033

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés