Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Global Waves in Resistive and Hot Tokamak Plasmas
 
research article

Global Waves in Resistive and Hot Tokamak Plasmas

Jaun, A.
•
Appert, K.  
•
Vaclavik, J.  
Show more
1995
Computer Physics Communications

Maxwell's equations are solved in a toroidal axisymmetric plasma. The numerical method implemented in the PENN code is based on a formulation in terms of the electromagnetic potentials and a discretization with standard bilinear or bicubic Hermite finite elements. Two models for the dielectric tensor operator yield different physical problems, which can be used comparatively to study small amplitude plasma perturbations down to the Alfven range of frequencies. The first treats the plasma as resistive fluids and gives results that are in good agreement with toroidal fluid codes. The second is a kinetic model taking into account the finite size of the Larmor radii; it is here successfully tested against a similar model in cylindrical geometry. New results are obtained for kinetic effects in toroidal geometry, showing that it might be difficult to use an Alfven wave heating scheme to heat a plasma up to temperatures that are relevant for a tokamak reactor.

  • Details
  • Metrics
Type
research article
DOI
10.1016/0010-4655(95)00105-6
Web of Science ID

WOS:A1995TJ53300002

Author(s)
Jaun, A.
Appert, K.  
Vaclavik, J.  
Villard, L.  
Date Issued

1995

Published in
Computer Physics Communications
Volume

92

Issue

2-3

Start page

153

End page

187

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CRPP  
SPC  
Available on Infoscience
April 16, 2008
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/21333
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés