Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Towards Optimal Offline Reinforcement Learning
 
Loading...
Thumbnail Image
working paper

Towards Optimal Offline Reinforcement Learning

Li, Mengmeng  
•
Kuhn, Daniel  
•
Tobias Sutter  
March 15, 2025

We study offline reinforcement learning problems with a long-run average reward objective. The state-action pairs generated by any fixed behavioral policy thus follow a Markov chain, and the empirical state-action-next-state distribution satisfies a large deviations principle. We use the rate function of this large deviations principle to construct an uncertainty set for the unknown true state-action-next-state distribution. We also construct a distribution shift transformation that maps any distribution in this uncertainty set to a state-action-next-state distribution of the Markov chain generated by a fixed evaluation policy, which may differ from the unknown behavioral policy. We prove that the worst-case average reward of the evaluation policy with respect to all distributions in the shifted uncertainty set provides, in a rigorous statistical sense, the least conservative estimator for the average reward under the unknown true distribution. This guarantee is available even if one has only access to one single trajectory of serially correlated state-action pairs. The emerging robust optimization problem can be viewed as a robust Markov decision process with a non-rectangular uncertainty set. We adapt an efficient policy gradient algorithm to solve this problem. Numerical experiments show that our methods compare favorably against state-of-the-art methods.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2503.12283v1.pdf

Type

Main Document

Access type

openaccess

License Condition

N/A

Size

700.71 KB

Format

Adobe PDF

Checksum (MD5)

1ae36bacfa9510f1c1f5537ea764b208

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés