Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Effect of the Parallel Current-Density on the Local Ideal 3-D Mhd Stability of the Helias Configuration
 
research article

Effect of the Parallel Current-Density on the Local Ideal 3-D Mhd Stability of the Helias Configuration

Moeckli, R.
•
Cooper, W. A.  
1993
Nuclear Fusion

The local ideal three dimensional (3-D) magneto-hydrodynamic (MHD) stability for the Wendelstein VTI-X (W VII-X) configuration is studied. A volume averaged beta limit of 5% is confirmed with a nearly optimal pressure profile using two methods to calculate the parallel current density: the magnetic method that uses magnetic information about the configuration (in particular, the condition of charge conservation, del.j = 0, is explicitly used in the resolution) and the geometric method that uses the geometry of the configuration itself. It is shown that the ballooning stability does not depend on the method of calculating the parallel current. In contrast, the value of the Mercier criterion depends sensitively on which method is used. Not only is the geometric method not sensitive to resonant surfaces (in particular. the surface l(p) = 1/6) but there is a systematic error in the Mercier criterion for nonresonant surfaces when an insufficient number of modes is used to calculate the equilibria numerically with a spectral method. However, this systematic error does not change the averaged beta limit of W VIII-X because the ballooning stability is more stringent than the Mercier stability for this configuration.

  • Details
  • Metrics
Type
research article
DOI
10.1088/0029-5515/33/12/I10
Web of Science ID

WOS:A1993NA56600011

Author(s)
Moeckli, R.
Cooper, W. A.  
Date Issued

1993

Publisher

IOP Publishing Ltd

Published in
Nuclear Fusion
Volume

33

Issue

12

Start page

1899

End page

1904

Subjects

ITER

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CRPP  
SPC  
Available on Infoscience
April 16, 2008
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/21233
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés