Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Optimizing Transactions for Captured Memory
 
conference paper

Optimizing Transactions for Captured Memory

Dragojevic, Aleksandar  
•
Ni, Yang
•
Adl-Tabatabai, Ali-Reza
2009
Proceedings of the 21st annual symposium on Parallelism in algorithms and architectures
21st Annual Symposium on Parallelism in Algorithms and Architectures

In this paper, we identify transaction-local memory as a major source of overhead from compiler instrumentation in software transactional memory (STM). Transaction-local memory is memory allocated inside a transaction, which cannot escape (i.e., is captured by) the allocating transaction. Accesses to such memory do not require calls to STM memory access functions (i.e., STM barriers). A compiler unaware of that may translate accesses to captured memory into expensive STM barriers. This presents us opportunities to improve STM performance. Our measurements with the STAMP benchmark suite (version 0.9.9) revealed that as many as 60% of the STM barriers generated by our baseline compiler access captured memory, including 90% of the write barriers and 45% of the read barriers. We propose runtime and compiler optimizations to elide STM barriers to captured memory. These techniques can also elide barriers for accesses to thread-local and read-only data. We implemented those optimizations in the Intel C++ STM compiler. Our experiments with the STAMP benchmark suite on a Intel Dunnington system (with 24 cores in a 4-node SMP system) show that these optimizations can improve performance by to 18% at 16 threads.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

spaa97-dragojevic.pdf

Access type

openaccess

Size

416.18 KB

Format

Adobe PDF

Checksum (MD5)

e054aff9ea6f776df7af05a37e5a18a3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés