Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Drying shrinkage and cracking initiation in clays: Main modeling concepts and application to the ventilation of a tunnel
 
conference paper

Drying shrinkage and cracking initiation in clays: Main modeling concepts and application to the ventilation of a tunnel

Péron, Hervé
•
Eichenberger, John  
•
Laloui, Lyesse  
2010
Unsaturated Soils
International conference on unsaturated soils, UNSAT’10

Damage induced by desiccation in clays (i.e. drying shrinkage and cracking) is an issue to be investigated in geo-environmental engineering, especially when the clay is used as a confining barrier for industrial and nuclear waste storage. Dramatic increase of the permeability and modifications of the mechanical properties of the barrier could ensue. This study first presents a modeling framework able to address the issue of desiccation in clays. The advanced constitutive model ACMEG-S, which relies on multi-mechanism hardening plasticity is used. Conditions for mode I (opening) cracks initiation such as desiccation cracks are supposed to be met when the minor principal effective stress becomes equal to a threshold value (like in Griffith criterion). A finite element analysis of the coupled hydro-mechanical transient processes is further performed. A tunnel excavated in Opalinus clay is considered, drying caused by its ventilation is simulated. The results of the simulation show the penetration of a drying front. The resulting effective stress distribution generates a gradual plastification at the neighborhood of the excavated gallery. It is shown how stresses develop during desiccation until a cracking criterion is reached.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

153 Peron Laloui.pdf

Access type

restricted

Size

291.95 KB

Format

Adobe PDF

Checksum (MD5)

b3a42914e585b31e75963a26c9a64784

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés