Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-square stable) stiff stochastic differential equations. Standard explicit methods, as for example the Euler-Maruyama method, face severe stepsize restriction when applied to stiff problems. Fully implicit methods are usually not appropriate for stochastic problems and semi-implicit methods (implicit in the deterministic part) involve the solution of possibly large linear systems at each time-step. In this paper, we present a recent generalization of explicit stabilized methods, known as Chebyshev methods, to stochastic problems. These methods have much better (mean-square) stability properties than standard explicit methods. We discuss the construction of this new class of methods and illustrate their performance on various problems involving stochastic ordinary and partial differential equations.
banff_stabilized_stocj_abd.pdf
openaccess
1.68 MB
Adobe PDF
dd60d567415443c5f194fe64a260ae43