Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Uniform s-Cross-Intersecting Families
 
research article

Uniform s-Cross-Intersecting Families

Frankl, Peter
•
Kupavskii, Andrey
2017
Combinatorics Probability & Computing

In this paper we study a question related to the classical Erdos-Ko-Rado theorem, which states that any family of k-element subsets of the set [n] = {1,..., n} in which any two sets intersect has cardinality at most ((n-1)(k-1)). We say that two non-empty families A, B subset of (([n])(k)) are s-cross-intersecting if, for any A is an element of A, B is an element of B, we have |A boolean AND B| >= s. In this paper we determine the maximum of |A| + |B| for all n. This generalizes a result of Hilton and Milner, who determined the maximum of |A| + |B| for nonempty 1-cross-intersecting families.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés