Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data
 
research article

An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data

Nobile, Fabio  
•
Tempone, R.
•
Webster, C. G.
2008
Siam Journal On Numerical Analysis

This work proposes and analyzes an anisotropic sparse grid stochastic collocation method for solving partial differential equations with random coefficients and forcing terms ( input data of the model). The method consists of a Galerkin approximation in the space variables and a collocation, in probability space, on sparse tensor product grids utilizing either Clenshaw-Curtis or Gaussian knots. Even in the presence of nonlinearities, the collocation approach leads to the solution of uncoupled deterministic problems, just as in the Monte Carlo method. This work includes a priori and a posteriori procedures to adapt the anisotropy of the sparse grids to each given problem. These procedures seem to be very effective for the problems under study. The proposed method combines the advantages of isotropic sparse collocation with those of anisotropic full tensor product collocation: the first approach is effective for problems depending on random variables which weigh approximately equally in the solution, while the benefits of the latter approach become apparent when solving highly anisotropic problems depending on a relatively small number of random variables, as in the case where input random variables are Karhunen-Loeve truncations of "smooth" random fields. This work also provides a rigorous convergence analysis of the fully discrete problem and demonstrates ( sub) exponential convergence in the asymptotic regime and algebraic convergence in the preasymptotic regime, with respect to the total number of collocation points. It also shows that the anisotropic approximation breaks the curse of dimensionality for a wide set of problems. Numerical examples illustrate the theoretical results and are used to compare this approach with several others, including the standard Monte Carlo. In particular, for moderately large-dimensional problems, the sparse grid approach with a properly chosen anisotropy seems to be very efficient and superior to all examined methods.

  • Details
  • Metrics
Type
research article
DOI
10.1137/070680540
Author(s)
Nobile, Fabio  
Tempone, R.
Webster, C. G.
Date Issued

2008

Publisher

Society for Industrial and Applied Mathematics

Published in
Siam Journal On Numerical Analysis
Volume

46

Issue

5

Start page

2411

End page

2442

Subjects

collocation techniques

•

PDEs with random data

•

differential equations

•

finite elements

•

uncertainty quantification

•

anisotropic sparse grids

•

Smolyak sparse approximation

•

multivariate polynomial approximation

•

Elliptic Problems

•

Finite-Elements

•

Uncertainty

•

Coefficients

•

Approximations

•

Propagation

•

Expansions

•

Quadrature

•

Chaos

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
CSQI  
Available on Infoscience
April 23, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/79568
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés