Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Datasets and Code
  4. HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed Distance Fields: Processed data and trained models
 
dataset

HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed Distance Fields: Processed data and trained models

Qi, Haozhe  
•
Zhao, Chen  
•
Salzmann, Mathieu  
Show more
June 19, 2024
Zenodo

HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed Distance Fields, CVPR 2024

Haozhe Qi, Chen Zhao, Mathieu Salzmann, Alexander Mathis.

Affiliation: EPFL

Date: June, 2024

Link to the CVPR article: https://openaccess.thecvf.com/content/CVPR2024/papers/Qi_HOISDF_Constraining_3D_Hand-Object_Pose_Estimation_with_Global_Signed_Distance_CVPR_2024_paper.pdf

Link to the Arxiv article: https://arxiv.org/abs/2402.17062


Here we provide the data of our article "HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed Distance Fields". It contains the preprocessed data of the interacting objects and SDF samples. Meanwhile, we also include the trained model weights here.

The overall structure of the data is:

├── ckpts.zip                                - Contains the trained weights model on different datasets (DexYCB and HO3Dv2)

├── annotations.zip                     - Contains the preprocessed annotations of DexYCB and HO3Dv2 for efficient data loading.

├── simple_ycb_models.zip         - Contains the preprocessed YCB objects for batched evaluation.

├── test.zip                                  - Contains the processed SDF files for DexYCB test set.

 

The code to reproduce the results is available at: https://github.com/amathislab/HOISDF

 


If you find our code, weights, predictions or ideas useful, please cite:

@inproceedings{qi2024hoisdf,  title={HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed Distance Fields},  author={Qi, Haozhe and Zhao, Chen and Salzmann, Mathieu and Mathis, Alexander},  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},  pages={10392--10402},  year={2024}}

  • Details
  • Metrics
Type
dataset
DOI
10.5281/zenodo.11668766
ACOUA ID

65596429-6204-40ed-bf9a-2fee58b90dbf

Author(s)
Qi, Haozhe  

EPFL

Zhao, Chen  

EPFL

Salzmann, Mathieu  

École Polytechnique Fédérale de Lausanne

Mathis, Alexander  

EPFL

Date Issued

2024-06-19

Version

1

Publisher

Zenodo

License

CC BY

EPFL units
CVLAB  
UPAMATHIS  
Event nameEvent acronymEvent placeEvent date
The 2024 IEEE / CVF Computer Vision and Pattern Recognition Conference

CVPR 2024

Seattle, Washington, US

2024-06-17 - 2024-06-21

RelationRelated workURL/DOI

IsVersionOf

https://doi.org/10.5281/zenodo.11668765

IsSupplementTo

HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed Distance Fields

https://openaccess.thecvf.com/content/CVPR2024/papers/Qi_HOISDF_Constraining_3D_Hand-Object_Pose_Estimation_with_Global_Signed_Distance_CVPR_2024_paper.pdf

IsNewVersionOf

[Preprint version]

https://doi.org/10.48550/arXiv.2402.17062
Available on Infoscience
July 26, 2024
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/240463
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés