GIS Databases: From Multiscale to MultiRepresentation1

Stefano Spaccapietra’, Christine Parent , Christelle Vangenot™

" Swiss Federal Institute of Technology Lausanne (EPFL)
EPFL-DI-LBD, 1015 Lausanne, Switzerland
{spaccapietra, vangenot}@epfl.ch
™ University of Lausanne - HEC Inforge
1015 Lausanne, Switzerland
Christine.Parent@hec.unil.ch

Abstract. Cartography is one of the major application areas using
geographical databases. Whether it is for the business of producing paper maps
for sale, or whether it is for displaying maps on a screen to visualize the result
of a query, we need computer systems that know how to represent the same
geographical area at different scales. The concept of multiscale database has
become popular in the GIS domain as a way to enforce consistency between
representations and reduce the global update load. Scaling, however, is just one
of the facets that may lead to keeping several representations for the same real-
world object. Viewpoint and classification are two major abstractions in the
design process that also generate multiple representations. This paper
investigates the generic issues and solutions to achieve flexible support of
multiple representation in a GIS database.

1 Introduction

Geographic data has become quite popular. It plays a major role in information
services to citizens, as one of the most common concerns in everyday life is locating
something we are looking for, or finding a way to reach it. It is the essence of an
increasing variety of societal management applications that range from land
management and ecological monitoring to housing or traffic control. Finally, its
economic importance is recognized by businesses that discover the benefits of
geomarketing strategies.

Maps are the most natural way to convey geographical information, and they are
excellent support to visualize analytical data about phenomena that have a
geographical extent. This includes geography-compliant maps, that show items of
interest as faithfully as possible with respect to their real-word location and shape, as
well as schematic maps (e.g., city transport systems, airline connections diagrams,
train networks, facility management networks), where the focus is on correct

' This work is supported by EEC and OFES as part of the MurMur project within
the context of the 5™ Framework IST Programme (project number 10723).
C.Vangenot is supported by FNRS (Swiss National Research Fund) under contract
2100-046664.

(topological) connections and readability rather than on precisely locating lines and
nodes.

A map is drawn according to a given scale. At different scales, the same
information is usually drawn differently (not just magnified or reduced) because of:

» drawing conventions that may change from one scale to another one,

» items that may appear/disappear or be aggregated/de-aggregated because their
size make them visible/invisible depending on the chosen scale,

* shape of visible items may be modified (made simpler or more precise),

» or simply the information is not available at the requested scale.

To maintain consistency and avoid redundancy, the ideal solution would be a
database where geometry information is kept at the most precise scale, and all
visualizations at less precise scales are automatically derived, mainly through
cartographic generalization processes [21, 35]. Unfortunately, this derivation cannot
be fully automated. Hence, map production systems have to explicitly store several
representations of the geometry of objects (usually one per scale range). This can be
done by either keeping a separate database per scale range, or by using a multi-scale
database, i.e., a database where spatial objects may be associated to a variety of
geometric representations that are scale dependent. More accurately, the latter should
be referred to as a multi-resolution database (scale is a concept that refers to map
drawing). Resolution is usually defined as the minimum geometric dimension that an
object must have in order to be of interest, and consequently represented in the
database. The resolution of information in the database is the resolution that either
was used at data acquisition, or the one that results from a cartographic generalization
process. If different resolutions are associated to the same objects, we can talk about
multi-resolution objects.

Beyond cartography, multiple representations of geographic data are needed to
serve multi-disciplinary user communities, as the same piece of land may support
analysis, planning, and forecast activities by city administrations, environmentalists,
sociologists, botanists, zoologists, etc. Altogether, the variety of representations that
may be recorded in a database for a given object extends over different facets, such
as:

* multiple geometry (within the same or different geometric abstract data types)
may characterize the same object in different contexts,

* coexistence of many abstraction levels in object classification, which may result
in the simultaneous, independent representation of a composed object (i.e., an
object that is built by aggregating a number of component objects, whether the
aggregation is based on geometric, temporal or semantic criteria) and its
component objects,

* coexistence of many abstraction levels in object description, which may result in
attributes having a hierarchical value domain (i.e., a domain composed of a
hierarchically structured set of values, such that values at a node are more precise
than the value in the parent node), and

* multiple representations in terms of thematic information, which corresponds to
maintaining several viewpoints in traditional databases.

Commercial systems poorly support the need for multiple representation. Few
GISs can explicitly represent objects with multiple geometry. Current DBMSs
provide limited support for multiple thematic representation. However, the situation
may soon evolve as the database and GIS research communities have been active in
developing proposals for new object identification and description schemes. Database
researchers proposed concepts such as roles, prototypical objects, deputy objects, or
aspects. GIS researchers focused on issues such as inter-level connectivity in multiple
level data sets, scale transition relationships, or stratified map space. Interoperable
environments have also been addressed to allow interconnecting related
representations from different information sources. This paper surveys the issues that
have been addressed.

2 A Framework for Multi-Representation

We assume that the real world of interest that is to be represented in the database is

composed of objects, their links in between and their static and dynamic properties

(attributes and methods). As representations may vary according to different criteria,

the representation space may be seen as a multi-dimensional space, where each

dimension (or axis) relates to one of the criteria in use. Dimensions we are

particularly interested in here” are:

» the spatial resolution dimension: coordinates on this axis represent the spatial
resolution ranges for which representations hold;

» the observer’s, or viewpoint dimension: coordinates on this axis represent the
different viewpoints for which representations are elaborated;

» the classification dimension: coordinates on this axis represent object instances as
members of a given object type.

A point in this 3-dimensional space is the representation of an object instance as a
member of the population of a given object type, and according to a given viewpoint
and to a given resolution range. Notice that two points may hold identical values, e.g.,
two viewpoints sharing the same representation for a given object instance at a given
resolution.

The 3D metaphor can easily characterize alternatives in schema definition (how the
data is presented to users) and database definition (how instances are grouped into
databases). For example, current single-resolution spatial databases correspond to
forming a database with representations that lie on a same plane orthogonal to the
resolution axis. A standard map is built from representations that lie on a single
straight line parallel to the classification axis; the position of the line is determined by
the map scale and the target viewpoint. Systems that support objects with multiple
geometry get rid of the resolution axis and work in 2D representation space. Solutions
that decompose the representation space into fragments (sub-cubes, planes or lines)

* For sake of simplicity, we limit ourselves to three dimensions. However, more
could be considered, e.g., a time dimension that would support representations at
different points in time.

are likely to require interschema/interdatabase links to be able to associate/retrieve
different representations of the same real world object.

Looking at the state of art and on practical applications, it is easy to see that
researchers usually focus on one dimension only. Multi-resolution databases, views
and multi-instantiation are separate research areas, each one pursuing its own
dimension. For sake of simplicity, our survey hereinafter discusses the dimensions
separately.

In the resolution dimension, the following choices may be found:

* cach object has a single representation (i.e., one database instance) which
includes multiple geometries, and all object instances are stored in a single multi-
resolution database,

» each object has multiple, interconnected representations (one per resolution
range) and
— there is a single-schema database that stores all representations,

— there is a multiple-schema database (one schema per resolution range)

— there are several single-schema databases (one per resolution range), each
one storing representations that are homogeneous in resolution,

— there are several multi-resolution databases.

In the viewpoint dimension, similar choices may be identified:
* cach object has a single representation (i.e., one database instance) which
includes multiple roles, and
— all object instances are stored in a single-schema database,
— all object instances are stored in a multiple-schema database (one schema per
viewpoint),
* each object has multiple, interconnected representations (one per role) and
— there is a single-schema database that stores all representations,
— there is a multiple-schema database (one schema per viewpoint)
— there are several single-schema databases (one per viewpoint), each one
storing representations that belong to the same viewpoint,
— there are several multi-viewpoint databases.

Complementary aspects that will also be discussed are inheritance issues, related to
the third dimension (object classification) and rules for object creation.

3 Multiple resolution

Data about the same geographical space may be collected at various resolution levels,
to serve different applications within an organization. For instance, the French
National Mapping Agency (IGN) maintains several databases about France, each one
used to produce maps in a specific scale range. Multi-resolution data may also be
needed for one single application, as is the case, for instance, in embedded navigation,
where only parts of the navigation process need detailed information (e.g., the
departure and arrival areas), while for the rest of the navigation only coarse level

information is needed (e.g., for traveling on a highway section). Finally, multi-
resolution data may just be a consequence of integrating data from various digital
sources that have been independently set up. This situation becomes more and more
common: with the focus on data reuse, justified by high data acquisition costs, data
integration has become one of the major challenges in GIS applications.

3.1. One object, one multi-resolution instance

To move from single-resolution to multi-resolution databases, one solution (assuming
a discrete, vector approach) is to allow an object instance to bear multiple geometries.
Each geometry is qualified with the relevant resolution range. The different
geometries, other than points, are mainly acquired either through separate data
collection processes, or via interactive, cartographic generalization processes, and
have to be explicitly input into the database. This approach follows the representation
principle: one object in the real world translates into one instance in the database.
Proposals by Frank & Timpf [11, 32], Kidner, Jones & al. [15, 17], Bedard [3], and
Vangenot [34] represent variations within this trend.

Multiple resolution, however, does not reduce to multiple geometries. The focus on
objects changes from one resolution level to another: more details bring in more
objects, less details result in objects being aggregated to form new objects of a
different type. Relationships between objects may change, including topological
relationships [14]. Thematic attributes of objects, and even thematic attribute values
may change [28, 29]. A multi-resolution database has to keep track of all links that are
needed to retrieve a consistent subset of database representations for each user
interested in data at a specific resolution. Aggregation links, for instance, are
necessary to support intelligent zooming [11].

A specific case in the category in this section is raised by federated databases. Here,
users access the federated database via a single integrated schema, which describes
virtual multi-resolution instances, but real instances are distributed over a set of
underlying, mono-resolution databases that participate into the federation [7, 25].

If this integrating approach is also used for the viewpoint and classification
dimensions, the result is one instance holding all possible representations. Because of
the complexity of changes that representation of the real world undergoes when
moving from one resolution to another one, keeping all facets in a single-instance
framework may become cumbersome. For instance, displaying a map at a given scale
requires examining all object instances to find out if they have a geometry defined
that corresponds to the requested scale and that is located in the space to be covered
by the map. This leads to building spatial indexes that depend on resolution. Similar
impact makes other traditional functionality (e.g., query processing, access rights
enforcement) more complex to implement.

3.2. One object, many single-resolution instances

One way to reduce complexity is to split the representation of a real-world object into
multiple, interconnected representations, each one materialized as an object instance

in the database. The question on how to split may be addressed independently from
the user perspective and from the system perspective. On the one hand, database
designers have to decide how information will be presented to users (hopefully, the
way users would like to see it). On the other hand, the way information is actually
stored may be quite different, as the criterion here is system performance or site
autonomy, not user-friendliness. What follows has to be understood as pertaining to
the user perspective.

Splitting may be along one dimension only: resolution, viewpoint, or classification.
Splitting, as we have stated, means having multiple object instances for the same real-
world object. If the split is by resolution (the case we are discussing in this section),
the different instances will bear different geometries, such that each geometry is
appropriate within a given resolution range. The existence of multiple instances rises
three questions:

* how the instances are classified: into one class in one database schema, into
different classes in the same schema, or into different classes belonging to
different schemas;

* how the instances are related: implicitly, through their identification mechanism,
or explicitly through links (e.g., association or generalization links); and

» which properties are associated to each instance: all properties explicitly or only
properties specific to the resolution of the instance, with other properties inherited
from other instances.

If all instances are classified into a single class, say Building, users will have to
resort to a more complex identification scheme (typically, the "normal" identifier plus
a code corresponding to the resolution level) to denote the instance they are interested
in: e.g., values for building-id may be <building#.resolution-code>, such as 372.rl,
372.r2, etc. If each instance is in a different class, identification will go through the
class name plus the normal identifier. In other words, it is the class name that will
include the resolution code (e.g., Building-r1, Building-r2, ...). Current proposals for
multiple instances all go for the second solution. More specifically, they recommend
to group into one schema object types that pertain to the same resolution level. Simply
stated, multiple resolution objects are handled through a set of single-resolution
schemas. The schemas may eventually map to a single physical database, as in
Timpf’s Map Cube model [33]. They may actually be implemented as views over a
global, multi-resolution schema. Or they may map to different databases, one per
resolution range [18].

Regarding inter-instance links, implicit linking through identifiers is possible but
not recommended. It leaves the entire burden to users, provides little support for
consistency and is likely to lead to poor performance. Explicit definition of links is
hence supported by all proposals for multiple instances. Depending on whether the
object types belong to the same schema or not, links will be just a specific kind of
association, or a new type of interschema link. Within the same schema, the semantics
of such a link is that the linked instances "represent the same object at different
resolution levels". This is very similar to the semantics of the traditional is-a link,
where linked instances represent the same object at different semantic resolution
levels, but it does not obey the inclusion semantics that characterizes the is-a link in

current database systems. Indeed, a change in resolution may result in a different set
of objects representing the reality of interest. For example, assuming a database on
roads, moving to a coarser resolution may cause small roads to disappear (they fall
below the threshold) and roads that run in parallel (e.g., highway lanes) to be merged
into a new road object. As a consequence, two types for the same objects at different
resolution will generally have intersecting populations, rather than one included into
the other. This needs a different link than the is-a link. It may even require several
links between the two types, to express links that may be one-to-one, zero-to-one,
one-to-many, or many-to-many depending on which instances are considered.

As for properties, associating to each instance the whole set of properties that are
relevant for that instance guarantees completeness of the representation, flexibility
and self-contained manipulability. However, this will also need a number of integrity
constraints to ensure that properties that are resolution-independent hold the same
value in all instances. As checking integrity constraints is time-consuming (hence,
lowers performance), modern database systems provide an inheritance mechanism
associated to the is-a link. Unfortunately, as we have just seen, is-a links are not
always appropriate for multi-resolution classifications. More research is needed to
extend the inheritance approach to object types with intersecting populations.

4 Multiple viewpoint

A viewpoint is what determines a given representation for some reality of interest,
among all possible representations. A viewpoint usually expresses information
requirements from a given set of users that show homogeneity in their requirements.
A viewpoint definition holds a specification of both the data structure (object and
relationship classes, attributes) and the rules for data usage (e.g., methods and
integrity constraints). As change in the classification of objects is the topic of the next
section, we will limit our discussion here to changes in the descriptive part, i.e., the
attributes (which extends to methods if database design uses an object-oriented
model).

The fact that different users may have different viewpoints is known from the very
beginning in the database field. Support for this diversity is achieved by allowing
definition of personalized views over an underlying global database schema.
However, the extent of flexibility in the view definition mechanism has significantly
changed with the evolution of database technology. Systems developed in the 70s
offered very little flexibility. They supported sub-schemas over the database schema,
where differences between the two mainly stemmed from allowing sub-setting
(selection) and renaming operations in the definition of a subschema.

Relational systems focused on the definition of a derived, virtual table, called a
view, from existing tables. Relational systems achieve maximum restructuring
flexibility, as arbitrary algebraic expressions may be used to build a view (although
the use of binary operators, e.g., join, may result in a view that does not support
update operations). This power in flexibility directly results from the poor semantics
that is embedded in flat relational tables. As the only structure that is supported is the
tuple structure, users can easily build a new tuple structure by relating attributes from
whichever table they want. However, view definition by restructuring operations
means that support is limited to representations that are derivable from existing ones.

For representations that are not 100% derivable the entire burden is on the users.
Users are responsible for adding the necessary artificial keys and foreign keys to link
related tables, and for providing the procedures to enforce the desired consistency
rules.

Object-oriented, or object-relational, database systems fail in supporting similar
flexibility. Object identity and complex object structures both make view definition a
problem that is not easy to solve. Using binary operations results in generation of new
objects, which rises the problem of providing a new object identity and keeping the
link between the new object and the objects it stems from. Combining unary
operations (e.g., projection and selection) in the definition of a view raises the issue of
how to insert the view as a new object type in the type hierarchy. This issue has no
solution that obeys the rules of classical object-oriented data models. Complex object
structures induce hierarchical arrangement of data that is not simple to restructure
(and generates new objects). For these reasons most systems based on the object-
oriented approach limit view definition to views that can be constructed using only
selection and renaming operations (i.e., object preserving operations). We are back in
the 70s, but with a more powerful paradigm. On the other hand, compared to
relational systems, object-oriented systems provide additional support for multiple
representations through generalization/specialization hierarchies that materialize links
between instances that represent the same real world object by sharing system-
generated object identifiers. However, this is known to be insufficient (in terms of
expressive power, user-friendliness, and practicality) to provide full flexibility in
multiple representation support.

View definition implements the two facets, presentation and implementation, that
we introduced at the beginning of Section 3.2. Users are presented with object types
and instances that are formatted according to their specific viewpoint. The system
collapses all descriptions into a single multi-viewpoint object. Because users navigate
only within their own viewpoint, there is no need to provide them with facilities to
view data according to another viewpoint. Because of the collapsing into a single
object type, the object type by definition materializes the link between alternative
viewpoints on the same objects. As for the facilities introduced by
generalization/specialization hierarchies and is-a links, they are discussed hereinafter.

A notable exception is the TROPES data model [20], where the focus is on a single
instance solution visible to users. Each object type then bears multiple descriptions
that are qualified by the name of the viewpoint they implement.

Views in GIS have been addressed in [5]. Rather than talking about schemas and
viewpoints in a database terminology, some authors use more GIS-oriented concepts.
For example, Stell and Worboys [31] see the database organized as a stratified map
space, where each map gathers objects that share the same semantic and spatial
granularity. Maps are grouped by map spaces, i.e., sets of maps showing the same
schema at different granularities. The stratified map space is the set of all maps
organized according to a hierarchy based on different granularity levels.
Transformation functions allow navigating in a stratified map space. Finally, a sheaf
is a set of stratified map spaces where each space covers a different spatial or
semantic area.

5 Multiple Classification

Because modeling is expressing general rules about the world of interest,
classification is the most fundamental abstraction in the data modeling process. It
allows to get rid of the details, and talk in terms of object classes, their relationships
and the properties we want to attach to them. It is also a very subjective abstraction.
Classification of the same set of objects is very likely to change when a different
viewpoint on data is taken. Classification may also change in time, whenever objects
acquire new properties or loose properties in their evolution. Even from a single
viewpoint it may be desirable to classify a given object into multiple classes, as
classification is not necessarily partitioning. Semantic and object-oriented data models
support this by providing the is-a link to define generalization/specialization
hierarchies. However, is-a links only support classification refinement and taxonomic
reasoning. They are not appropriate for arbitrary classifications, where two sets of
objects are related but neither one is included in the other (intersection semantics). To
support intersecting classes, some approaches allow multiple inheritance: the
intersection class may then be modeled as a subtype of the two initial classes. Beyond
the fact that this modeling trick results in the creation of artificial classes (where
artificial means not of interest for the application), its scope is restricted to classes that
belong to the same generalization/specialization hierarchy (because of consistency
rules on object identity).

Another limitation of current generalization/specialization hierarchies is their static
aspect. Objects are not allowed to move from one class to another. Moreover, because
of dynamic binding implementations, objects are not allowed to belong to two leaf
classes. This set of constraints is not acceptable when the focus is on data modeling.
While an ultimate, consensus solution is not yet available to escape from this too rigid
framework, significant research efforts have already produced a number of proposals
which, in different ways and using different terminology, aim at supporting the role
concept [2]. A role is an alternative classification of an object, such that an object may
become a member of several role classes, remain a member for some time and then
release its membership. Objects can move from one role class to another [4, 24]. Role
classes may be static, which means their type is defined in the schema, or they can be
created and deleted dynamically during application execution [24]. In most
approaches role classes are seen as a transient repository for objects from a given
object type, called the base object type. For example, objects of the base type Person
may temporarily belong to role classes such as Student, Worker, Retired. This is
similar to generalization/ specialization hierarchies, except that objects can move
around and belong to many leaf classes at the same time. This transient aspect leads
naturally to propose keeping the lifecycle of objects in roles [27]. In [13, 27] an object
can be instantiated several times as different instances of the same role. This allows
representing, for example, a person who registers as a student in two different
institutions.

An additional requirement for role classes is to accept instances from different
object types that do not belong to the same generalization hierarchy. For example, a
Car-owner role may be populated with instances from the Person type and instances
from the Company type (both companies and persons may own cars). The category
concept [10] was proposed to cope with this situation in the context of the Entity-

Relationship model. In the context of object models, this requirement is easier to
achieve in proposals that do not require the existence of a base object type [12, 16,
19]. In the latter models, the role type concept replaces the object type concept.
Objects can enter the database through creation in any of the roles that accept creation
operations, and then move around according to inter-role links (which can be bi-
directional or not depending on application constraints).

Roles provide a solution to support many representations of a single object, such
that each representation is materialized into one database instance. This scheme is
also referred to as multi-instantiation, although this term is sometimes used to
specifically denote models where every type is considered as a role type [12]. It
allows to easily support properties and relationships that are role-specific. Thus, the
role concept conveys both a change in classification and a change in viewpoint. It has
been investigated by many authors, resulting in many variations in the rules that
define the allowed data structures (namely, relationships between roles and the
corresponding object type) and the allowed lifecycles (how objects can move around
in roles) [see, e.g., 1, 6, 16, 19, 22, 23].

6 Inheritance

Moving from objects to roles, i.e., from mono- to multi-instantiation, rises the issue of
which inheritance mechanism, if any, should be associated to the inter-role links. It is
indeed not possible to just reuse the object-oriented combination of automatic
inheritance, late binding, refinement, redefinition and overloading. These concepts
and mechanisms are strongly related to the inclusion semantics and mono-
instantiation rules of the generalization/specialization hierarchies that are embedded in
object-oriented data models.

Two basic alternatives have been proposed to replace or complement the automatic
inheritance and late binding approach: either static, explicitly defined inheritance, or
inheritance on demand in query formulation. An example of the former is known as
delegation: the definition of an object/role type includes attributes whose value is not
stored within the instance of that object/role type, but derived from the corresponding
homonym attribute in the corresponding instance belonging to another object/role
type. Reference in a query to one of these derived attributes automatically results in
accessing the other instance to get the requested value. The net effect is similar to
inheritance, but this inheritance is limited to the subset of attributes that the designer
freely chooses. Actually, most proposals go for some mix of automatic inheritance
and delegation. For example, object types and role types are organized into a mixed
hierarchy, where they may be linked by is-a links or by role links. Automatic
inheritance with late binding is the rule for types linked by is-a links, whereas role
links obey the delegation principle [13].

The second solution, specifying the desired inheritance as part of query
formulation, is a sort of adjustable dynamic binding, driven by users’ specifications
rather than by static schema definitions. When accessing an object, the user has to
specify the multi-instantiation context to be considered for the query. That is to say,
which other object/role types can be accessed to find the desired property (attribute or
method) if not found in the type directly denoted in the query. We refer to this as the
scope of the query. Moreover, the user can specify in which population the object

instance to start with is to be taken. We refer to this as the selected viewpoint for the
execution of the query. The combination of these two specifications, viewpoint and
scope, gives the user complete control on which object properties have to be accessed
[12].

This is particularly relevant in spatio-temporal databases. Spatio-temporal databases
use system-defined attributes to hold spatial and temporal information. These
attributes have standard names, such as “geometry”, “lifecycle”, or “timestamp”. If
both a superclass and its subclass have specific spatial or temporal information, an
attribute with the same name will exist in both classes. For instance, one may want to
keep the lifecycle of somebody both as a Person and as an Employee, where
obviously the two lifecycles hold different values for the same person. A traditional
dynamic binding mechanism would automatically return the value in the subclass.
Actually, dynamic binding proceeds from the idea of genericity versus specificity, and
that genericity is seen as a way to abstract from specificity in denoting a method,
while keeping specificity as the goal in executing the denoted method. But in the
lifecycle example there is no such idea. The two values have different semantics, and
there is no reason to substitute one by the other. An application interested in lifecycles
of Person objects would not be willing to get instead lifecycles of objects in
Employee, Student, etc. The same applies to spatial information. Assume the
superclass has spatiality at 1/10°000 resolution and the subclass has spatiality at
1/250°000 resolution. An application drawing a map at 1/10°000 would definitely not
care of spatiality existing at 1/250°000. Once more, a solution is needed that provides
more flexibility and user control on accessing rules. One proposal based on the
viewpoint and scope idea may be found in [8].

7 Object Creation

When an object deserves multiple representations in distinct instances, the question
rises whether there are rules governing creation of instances and their migration from
the population of a type to the population of some other type. For example, in
proposals that assume the co-existence of a base object type (holding properties that
are inherent to the object) and multiple role types (holding properties specific to the
role), objects must be created at first in the base object type. Once created, they can
generate additional instances in the role types, but cannot migrate to role types (where
by migration we mean disappearing from the source population and appearing in the
target population). Consistently, objects cannot be deleted in the base type as long as
they are still represented in a role type.

The workflow that governs the membership behavior of an object can be defined
and constrained in different ways. One approach is the definition of membership
predicates for each object/role type. This allows automatic acquisition of new roles:
when an object instance is modified, its new value is confronted with the membership
predicates and whenever the predicate is satisfied the instance is classified as member
of that population [23, 24]. Predicates may also be checked on demand, rather than
automatically on modification. Inference rules may be associated to each object/role
type, specifying which other types may or may not be populated by an instance
migrating or being generated from this type [19, 24, 27]. Kambayashi & Peng [16]
propose to associate transformation functions to migration/generation paths, to

compute values and structure for the target instance from one or more source
instances. Transformations between representations have also been addressed in [7,
18].

8 Conclusion

Support for multiple representations has been an active research domain, in particular
over the last decade. However, it is our feeling that only recently it has come out as a
the next major step forward in data modeling technology. Clearly the focus on
reaching operational solutions for object-oriented technology in database management
has driven most of the attention from the research and development world. But the
perspectives that object-based approaches made visible to users have made users more
demanding in terms of satisfaction of their requirements. This gives a substantial new
impetus to more flexible representation schemes that can support full customization
despite information sharing.

This paper proposed a generic framework to address the multiple representation
problem, making clear that different phenomena contribute to a diversification of
representations. We have investigated the related issues and solutions, showing that,
despite similarities, the approach may differ from one dimension to the other. It may
also differ in between the users’ view and the implementation view. We focus on
multiple representation of objects, but the concern extends to relationships, including
topological relationships [9, 14].

The issues we addressed are of great relevance in the GIS world, and directly apply
to multi-resolution geographical databases. The MurMur European project, in which
we are involved, aims at specifying and developing a spatio-temporal data model that
provides concepts and facilities to fully support multi-resolution and multi-
representation. The MADS data model [26] serves as initial framework. The project
started January 1%, 2000 and will last for 30 months. More about the project may be
found in [30].

References

[1] A. Albano, G. Ghelli, R. Orsini. Fibonacci: A Programming Language for Object
Databases, Very Large Data Bases Journal, 4(3), p. 403-444, 1995.

[2] C.W. Bachman. The role concept in data models, Proceedings of the Third International
Conference on Very Large Data Bases, VLDB'77, Tokyo, Japan, p. 464-476, October 6-8,
1977.

[3] Y. Bédard. Visua modeling of spatial databases: Towards Spatial extensions and UML,
Geomatica, 53(2), p.169-186, 1999.

[4] W.W. Chu, G. Zhang. Associations and roles in object-oriented modeling, Proceedings of
the 16th International Conference on Conceptua Modeling, ER'97, Los Angeles,
California, USA, p. 257-270, November 3-5, 1997.

[5] C. Claramunt. Un modéle de vue spatiale pour une représentation flexible de données
géographiques. Ph.D. Thesis, Université de Bourgogne, Dijon, France, 1998.

[6] S. Coulondre, T. Libourel. Des critéres dans les classes : Homogénéisation de la gestion
des roles, Proceedings of 15eémes Journées Bases de données Avancées, BDA'99,
Bordeaux, France, p. 263-281, October 25-27, 1999.

[7] T. Devogele. Processus d'intégration et d'appariement de bases de données géographiques:
Application & une base de données routiere multi-échelle. PhD Thesis, Université de
Versailles, Institut Géographique National, 1998.

[8] P. Donini, S. Monties. Qualified Inheritance in Spatio-Temporal Databases, IAPRS, Vol.
XXXII1, Proceedings of the XIX Congress of the International Society for
Photogrammetry and Remote Sensing, Amsterdam, July 16-23, 2000.

[9] M.J. Egenhofer, E. Clementini, P. Di Felice. Evaluating inconsistencies among multiple
representations. Proceedings of the Sixth International Symposium on Spatial Data
Handling, SDH'94, p. 901-920, Edinburgh, Scotland, 1994.

[10] R. Elmasri, J. Weeldreyer, A. Hevner. The Category Concept: An Extension to the Entity-
Relationship Model, International Journal on Data and Knowledge Engineering, 1(1),
1985.

[11] A. Franck, S. Timpf. Multiple representations for cartographic objects in a multi-scale
tree: Anintelligent graphical zoom, Computers & Graphics, 18(6), 1994.

[12] M. Gentile. An object-oriented approach to manage the multiple representations of real
entities, EPFL PhD Thesis no 1490, 1996.

[13] G. Gottlob, M. Schrefl, B. Rock. Extending object-oriented systems with roles, ACM
Transactions on Information Systems, 14 (3), p.268-296, 1996.

[14] T. Jen. Formalisation des relations spatial es topologiques et application a |'exploitation des
bases de données géographiques, PhD Thesis, Université Paris X| Orsay, 1999.

[15] C.B. Jones, D.B. Kidner, L.Q. Luo, G.L. Bundy, JM. Ware. Database design for a multi-
scale spatial information system, International Journal of Geographical Information
Systems, 10(8): 901-920, 1996.

[16] Y. Kambayashi, Z. Peng. Object deputy model and its applications, Proceedings of the
Fourth International Conference on Database Systems for Advanced Applications,
DASFAA'95, p. 1-15, Singapore, April 11-13, 1995.

[17] D. Kidner, C. Jones. A Deductive Object-Oriented GIS for Handling Multiple
Representations, Proceedings of the Sixth International Symposium on Spatial Data
Handling, SDH'94, p. 882-900, Edinburgh, Scotland, 1994.

[18] T. Kilpelainen. Maintenance of topographic data by multiple representations, Proceedings
for the Annual Conference and Exposition of GIS/LIS '98, Forth Worth, Texas, p. 342-
351, November 10-12, 1998.

[19] Q. Li , F. H. Lochovsky. ADOME: An advanced object modeling environment, |EEE
Transactions on Knowledge and Data Engineering, 10(2), p. 255-275, 1998.

[20] O. Marino Drews. Raisonnement classificatoire dans une représentation a objets multi-
points de vue. PhD Thesis, Université Joseph Fourier Grenoble I, 1993.

[21] J.C. Mdlller, J.P. Lagrange, R. Weibel, F. Salgé. Generalization: State of the art and issues,
in J.C. Mdller, JP. Lagrange and R. Weibel, editors, GIS and Generalization:
Methodology and Practice, p. 3-17. Taylor & Francis, 1995.

[22] H. Naja. Lareprésentation multiple pour I'ingénierie, L'objet, 4(2), p.173-191, 1998.

[23] E. Odberg. Category classes: flexible classification and evolution in object-oriented
databases, Proceedings of Advanced Information Systems Engineering, CAiSE'94,
Utrecht, The Netherlands, p. 406-420, June 6-10, 1994.

[24] M.P. Papazoglou, B.J. Kramer, A. Bouguettaya. On the representation of objects with
polymorphic shape and behavior, Proceedings of the 13th International Conference on
Entity-Relationship Approach, ER'94, Manchester, UK, p. 223-240, December 13-16,
1994.

[25] C. Parent, S. Spaccapietra, T. Devogele. Conflicts in Spatial Database Integration,
Proceedings of the 9th International Conference on Parallel and Distributed Computing
Systems, PDCS '96, Dijon, France, p. 772-778, September 25-27, 1996.

[26] C. Parent, S. Spaccapietra, E. Zimanyi. Spatio-Temporal Conceptual Models: Data
Structures + Space + Time, Proceedings ACM-GI S99, Kansas City, November 6-7, 1999.

[27] B. Pernici. Objects with Roles, Proceedings of ACM Conference on Office Information
Systems, Cambridge, Massachusetts, p. 205-215, 1990.

[28] P. Rigaux, M. Scholl. Multi-scale partitions: Applications to spatial and statistical
databases, Proceedings of the 4th International Symposium on Advances in Spatial
Databases, SSD'95, Portland, Maine, Springer-Verlag LNCS 951, p. 170-183, August 6-9,
1995.

[29] M. Schall, A. Voisard, J.-P. Peloux, L. Raynal, P. Rigaux. Systémes de Gestion de Bases
de Données Géographiques, Spécificités, International Thomson Publishing, 1996.

[30] S. Spaccapietra, C. Parent, E. Zimanyi, C. Vangenot. MurMur: A Research Agenda on
Multiple Representations, 1999 International Symposium on Database Applications in
Non-Traditional Environments (DANTE'99), Kyoto, Japan, November 28-30, 1999.

[31] J. stell, M. Worboys. Stratified Map Spaces: A formal basis for multi-resolution spatial
databases, Proceedings of the 8th International Symposium on Spatial Data Handling,
SDH'98, Vancouver, Canada, p. 180-189, July 11-15, 1998.

[32] S. Timpf, A. Franck. A multi-scale DAG for cartographic objects, Proceedings of Auto
Carto 12, Charlotte, North Caroline, USA, p. 157-163, Feb.27-March 1, 1995.

[33] S. Timpf. Hierarchical structures in map series, Ph.D. thesis, Technical University Vienna,
1998.

[34] C. Vangenot. Multiresolution Representation. Concepts for the description of multiple
representation databases, (in French), International Journal of GIS and Spatial Analysis,
Hermes, Paris, 8(1-2), p.121-148, 1998.

[35] R. Weibel, G. Dutton. Generalizing spatial data and dealing with multiple representations,
In P. Longley, M.F. Goodchild, D.J. Maguire, D.W. Rhind, editors, Geographical
Information Systems: Principles, Techniques, Management and Applications, vol. 1, 2nd
edition, Geoinformation International, 1999.

