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Our approach is based on the multi-sensory integration of the standard theory of

neuroscience, where signals of a single object coming from distinct sensory systems are

combined. The acquisition steps of signals, filtering, selection and simplification intervening

before proprioception, active and predictive perception are integrated into virtual sensors

and a virtual environment. We will focus on two aspects: 1) the assignment problem:

determining which sensory stimuli belong to the same virtual object and (2) the sensory

recoding problem: recoding signals in a common format before combining them. We have

developed three novel methodologies to map the information coming from the virtual

sensors of vision, audition and touch as well as that of the virtual environment in the form of

a ‘cognitive map’. Copyright # 2004 John Wiley & Sons, Ltd.
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Introduction

An Autonomous Virtual Agent (AVA) situated in a

Virtual Environment (VE) is equipped with sensors for

vision, audition and touch that inform it of the external

VE and its internal state. An AVA possesses effectors to

let it exert an influence on the VE and control architec-

ture to coordinate its perceptions and actions. The

behavior of an AVA is adaptive as long as the control

architecture allows it to maintain its variables in their

validity zone.

Our Artificial Life Environment (ALifeE) based on an

original approach inspired by neuroscience equips an

AVA with the main virtual sensors in the form of a small

nervous system.1 The control architecture is kept simple

to optimize the management of the AVA’s virtual sensors

and perception. The processes of filtering, selection and

simplification are carried out after obtaining the sensorial

information. This approach allows us to achieve some

persistence in the form of a ‘cognitive map’.

The ‘mental processes’ of an AVA can be simulated.

Behavioral animation includes the techniques applied to

make an AVA intelligent and autonomous, to react to

its VE and to make decisions based on its perceptive

system, its short-term memory and long-term reasoning.

Intelligence is the ability to plan and carry out the tasks

based on the model of the current state of the VE.

Our objective is to permit the AVA to explore un-

known VEs and to construct mental structures and models,

cognitive maps or plans from this exploration. Once its

representation has been created, the knowledge can be

communicated to other AVAs. Each AVA perceives

objects and other AVAs with the help of its VE, which

provides information concerning their nature and posi-

tions. The behavioral model decides which action the

AVA should take (such as walking or handling an

object) and then uses the knowledge.

Contributions. In this paper, we present three novel

methodologies:

* The first technique integrates several virtual sensors

in the same multi-sensorial control architecture.

* The second technique integrates different perception

types of an AVA coupled with its sensors.
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* The third technique allows the fusion of multi-

sensorial information in the form of two ‘cognitive

maps’ and ‘internal visual memory’ before the AVA’s

learning and evolving processes.

Document organization: We will begin by examining

background research work. Then we will introduce our

methodology. Following that, we will present our reali-

zation and experimental results. Finally, we will con-

clude and suggest possible directions for future work.

Virtual Sensors Background

An AVA should be equipped with virtual sensors for

vision, audition and touch. These sensors constitute a

starting point to implement behavior such as direct

vision during a move, handling of objects and respond-

ing to sounds or words.

Our ALifeE integrates in an important way the main

virtual sensors of an AVA as in the following research:

Virtual Vision proposed by,2–4 Virtual Audition proposed

by5 and Virtual Touch proposed by.6 After acquiring the

information, the basic perceptive part of the AVA is

carried out by the Flexible Perception Pipeline approach

proposed by.7

SyntheticVision

Synthetic vision is the main information channel be-

tween the VE and the AVA.8,9 The AVA perceives its

virtual scene from a window and the resulting informa-

tion is sufficient for local navigation. The mixture of

image recognition and representation of its VE allows

the AVA to react in real time. Noser and al.3 have used

an octree as an internal representation of the AVA’s view

of its VE. These approaches propose a visual memory of

the AVA in a 3D environment composed of static and

dynamic objects.

The perception of the AVA in its VE is communicated

by vision and sound, sometimes by sensorial tactile

information. Its behavior, as in humans, is strongly

influenced by data supplied by its sensors and its own

intelligence for certain ends such as: extraction, simpli-

fication and filtering, which depend on perception cri-

teria associated with each sensorial modality. All of this

is integrated in the perceptive part of our ALifeE.

The AVA explores an unknown environment con-

structed on mental models as well as a ‘cognitive map’

based on this exploration. Navigation is carried out in

two ways: globally (with the pre-learned model of the

VE, a few changes and the search for performance with a

path planning algorithm) and locally (with direct acqui-

sition of the VE). A 3D geometrical model in the form of

a grid is implemented with the help of an octree com-

bined with the approach proposed by.3,4

Synthetic Audition

In real life, the behavior of people or animals can be

strongly influenced by sounds. Wenzel10 calls this ‘the

function of the ears is to point the eyes’. Audition is a

temporal sensor, which is very sensitive to changes in

acoustic signals. We can locate objects in space and,

even more specifically, when they move. Moreover,

acoustic signals carry a lot of semantic and emotional

information; they inform us about sound sources rela-

tive to us as well as the propagation of sound paths in an

acoustic environment. In our ALifeE, the restitution of

sound must be very effective to react to sound events

perceived by the AVAs in each frame.

The most important properties of a sound source in

terms of computer knowledge are: 3D position of the

source in the world, orientation of the sound source,

cone of propagation, distance between the listener and

the source, Doppler effect, volume and frequency, oc-

clusion, obstruction and exclusion.

All these parameters can be set to filter the sound

source depending on the simulation conditions. Regard-

ing 3D sound, one may believe that it is sufficient to

place the sound source in a 3D world without taking

care of its direction.11 However this is too big a limita-

tion, especially for reverberations and reflections. In our

ALifeE, we represent the sound propagation with a cone.

This solution gives us the flexibility to set specifically the

different filters for each sound source.

Synthetic Touch

Sensorial tactile information can be used to push but-

tons or to touch and handle objects. The simulation of

this kind of sensor resembles the collision detection

proposed by.12 We have rather opted for the process

described by6 with V-Collide collision detection ap-

proach.

The V-Collide approach performs efficient and exact

collision between triangulated polygonal models. It uses

a 2-level hierarchical approach:

* The top level eliminates from consideration pairs of

objects that are not close to each other,

* The bottom level performs exact collision detection

down to the level of the triangles themselves.
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SyntheticWorld

In synthetic vision, the vision models for an AVA are

different from those used in behavioral robotics. A robot

can only acquire information from its environment

through these sensors, which limits its behavior in

navigating and avoiding obstacles. In a VE, supplemen-

tary information can be extracted and dealt with accord-

ing to the perception model chosen for the AVA. This

makes it faster and ‘intelligent’ during actions. To

optimize the model we chose a certain type of repre-

sentation of the virtual world where the AVA maintains

for example its vision at a low level system.

Nevertheless, because of scale and plausibility con-

straints of its autonomous behavior, an AVA restricts its

perception locally in relation to the VE as a whole. This

approach is used more specifically when there are a lot

of AVAs as described by.8 Most important, the choice of

the method must reflect an AVA in a VE close to reality.

PerceptionBackground

As mentioned above, considerable restrictions appear

when the actions produced by the AVA require dy-

namic knowledge of the VE with a perception system.

One of these restrictions concerns the reflex actions,

which require perception, but not memory concerning

what has been perceived. In the classical approaches

different behaviors implement their own perception

mechanisms.

Several methods like the one used by7 have been

proposed to implement perception. The AVA maintains

a perception puzzle, each piece corresponding to a

specific virtual sensor. A pipeline is composed of filters

to extract relevant information from the data supplied

by the related sensor. Our attempt to model an approach

of unified perception is described by.13 We will define

the main ideas for the implementation of our ALifeE in

the following subsections.

Proprioception

Proprioception is inspired by the human immune sys-

tem composed of functional layers combining rapid and

archaic mechanisms of innate immunity and slower

mechanisms of acquired or adaptive immunity. The

response time depends on the anterior exposition to

pathogen.

Our proprioception is based mainly on the integration

in a same model of endogenous variables, homeostasis

and reinforcement learning as proposed by14 and

adapted for the ALifeE:

* The notion of ‘endogenous’ variables captures infor-

mation related to the internal state of the AVA that is

influenced by both the AVA’s perceptions and

actions but not restricted to them. Additional

influences permit differentiation between the effects

of similar perception inputs, on the resulting AVA’s

action. The existence of these variables constitutes an

important type of cognitive intermediary between the

sensory and virtual human controller poles of the

behavior loops.

* The notion of ‘homeostasis’ describes variables

whose temporal dynamics must guarantee their

keeping within pre-determined boundaries. Since

exceeding these boundaries in human beings would

result either in significant discomfort or in the death

of the AVA, actions are taken to prevent these

variables from departing from the set-value.

In order to be truly autonomous, the AVA must not

just be capable of intelligent action, but also be self-

sustaining. The third aspect of the model is the use of a

reinforcement learning mechanism. This enables the

discovery of a sequence of actions, which allows the

AVA to remain viable despite the strong constraints

exerted by the VE and the AVA’s own endogenous

variability.

Active Perception

In a VE, an AVA requires a combination of perception

and action to behave in an autonomous way. The

perception system provides a uniform interface to var-

ious techniques in the field of virtual perception, includ-

ing synthetic vision, audition and touch. In usual

approaches, different behaviors implement their own

perception mechanisms, which leads to computation

duplication when multiple behaviors are involved. Ba-

sically, an AVA maintains a set of perception pipelines,

each corresponding to a particular type of virtual sen-

sor.7 A pipeline is composed of filters that coordinate

themselves in order to extract relevant information from

the data sent by the associated virtual sensor.

Predictive Perception

The faculty of predicting, one of the main activities of

the human brain is an essential notion in the perception

of an AVA. It plays a basic role in active perception by
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giving the AVA the possibility to direct it’s look and

attention elsewhere.

This prediction can be found in humans when antici-

pating the path a ball they should catch will take,

avoiding mobile obstacles, preparing the body to wake

up during the final hours of sleep, or even in the absurd

effectiveness of a placebo.15

To obtain an active perception like directing the look

and attention elsewhere, prediction functions must be

organized. In the visual system alone, certain zones of the

cortex deal with outlines, others with forms, movement,

distance or color. These processes are unconscious.

Our model of predictive perception is based on the

mathematical theory of the observer. Algorithms are

used to predict from partial measures, often external

and with sound effects, the internal state of a non-linear

system. An observer is typically composed of a system

simulation that uses an internal model that may be

approximate. It is guided and corrected by the measures

taken on by the system. In problems of active perception

and in certain circumstances, the observer also allows

the selection of the measure or combination of measures

to be carried out. This is particularly useful in improv-

ing the estimation of the system state at a given moment;

this is inspired by the human nervous system.

Methodology

An AVA is not only situated in an environment with the

help of virtual sensors but it must be equipped with

behavior, perception and memorization faculties to

make it autonomous and ‘intelligent’. Our objective is

to give an AVA the ability to explore an unknown

environment and thus construct mental models and

‘cognitive maps’. During or after the construction of

these models, the AVA can carry out many functions

successfully, for example ‘path-planning’, navigating

and ‘place-finding’.

Our ALifeE model is based on the multi-sensory

integration of the standard theory of neuroscience (Fig-

ure 1). Signals related to the same virtual object but

coming from distinct sensory systems are combined. We

will focus on two aspects: 1) the assignment problem:

determining which sensory stimuli belong to the same

virtual object and 2) the sensory recoding problem:

recoding signals in a common format before combining

them.1

We have developed a multi-sensorial approach based

on a 3D geometric model with a grid implementing an

octree since humans do not carry out spatial reasoning

based on a continuous map, but on a discrete one.16 Our

computation of the octree was achieved using the fast

voxelisation method developed by.17

Our goal was to introduce the equivalent of a small

nervous system into the control architecture, thus link-

ing its sensors and its effectors. Learning can modify the

organization of the control architecture and that of

the evolving process at the same time. The latter will

be the object of our future research, as these processes

are the main adaptive ones that nature has invented to

ensure the survival of living beings.

Figure 1. A schematic representation of the standard theory for multi-sensory spatial integration and sensory-motor

transformations. Sensory modalities encode the location of objects in reference frames that are specific to each modality.

Multi-sensory integration occurs in multiple modules with the parietal cortex.
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An AVA is able to explore its VE and work out a mental

representation of its spatial organization in the form of a

‘cognitive map’. It can then use it to locate itself and

reach a given goal. This ability is based on the use of a

performing visual system as described before. An AVA

learns a more general model of the virtual world during its

interactions with the VE. This model helps it anticipate

how the VE changes depending on actions that are

performed.

An AVA is situated in a simulated VE with sensors for

vision, audition and touch, which inform it of its ex-

ternal VE (active and predictive perception) or its inter-

nal state (proprioception). An AVA has effectors

permitting it to act on the VE and a control architecture

that coordinates its perceptions and actions. The behavior of

an AVA is adaptive as long as the control architecture

allows it to maintain its essential variables in their

viability zone (e.g. a corrective action was accomplished

at point B, to avoid leaving the viability zone at point A).

The control architecture plays the role of a motivational

system when it is used to choose successive goals that

the AVA is trying to reach or to arbitrate between

conflicting goals.

The auditive position of an object is predicted from its

visual position. This requires the transformation of a

reference system whose origin is a vision coordinate

(eye position) to a reference system whose origin is an

audition coordinate (head position). The comparison of

the results can be used to determine whether the signals

from the two types of virtual sensors belong to the same

object.

Our multi-sensorial approach (Figure 2) integrates the

behavior model of an AVA. The control architecture is

standardized with sub-modules covering the different

techniques necessary for the artificial simulation of the

AVA’s behavior.

A major problem in behavioral learning is the intro-

duction of automatic learning techniques in multi-agent

systems. It is a challenge to teach multi-agent systems

how to behave, interact or get organized in order to im-

prove their collective performances in carrying out a task.

In this context, two major obstacles are encountered:

* The choice of a learning technique relevant to the task

and the level. It should allow comparison between

similar problems.

* The choice of a learning protocol.

Our ALifeE’s objective is to combine these two generic

sub-parts, namely a specific form of learning with an

AVA’s simulator.

Figure 2. A schematic representation of our ALifeE. Virtual Vision discovers the VE, constructs the different types of Perception

and updates the AVA’s Cognitive Map to obtain a multi-perceptive mapping. Then the Control Architecture uses both the

‘cognitive maps’ and the ‘memory model’ to interact with the learning, development, and control processes of the AVA (Virtual

Human Controller).
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Realization

Integration of Virtual Sensors

The modeling of an AVA gaining its independence with

regard to its virtual representation remains an impor-

tant theme in research and is very close to autonomous

robotics. It helps also to understand and model human

behavior. The AVA collects information only through

the virtual sensors described earlier.

We assume that vision is the main canal of informa-

tion between the AVA and its environment as indicated

by the standard theory in neuroscience for multi-

sensorial integration.18

The sensorial modalities update the AVA’s cognitive

map to obtain a multi-sensorial mapping. For example,

visual memory in the AVA’s internal memory is used

for a global move from point A to point B. Should

obstacles be present, it would have to be replaced for a

local move by direct vision of the environment.

In our ALifeE approach, we tried to integrate all the

multi-sensorial information from the AVA’s virtual

sensors. In fact, an AVA in a VE may have different

degrees of autonomy and different sensorial canals

depending on the environment. For instance, an AVA

moving in a VE represented by a well-lit room will use

primarily the sensorial information of vision. However

if the light is turned off, the AVA will appeal to the

acoustic or tactile sensorial information in the same way

a human would move around in a dark room.19

From this observation we derive the hypotheses un-

derlying our ALifeE framework approach. They are

backed up by the latest research in neuroscience,1 which

describes a partial re-mapping at the behavioral level of

the human including:

* Assignment: the prediction of the acoustic position of

an object from its visual positions requires a

transformation from its eye-centered (vision sensor)

coordinates to its head-centered ones (auditory sensor).

The comparison of these two types of results can be

used to determine whether the acoustic and visual

signals are directly connected to the same object.

* Recoding: the choice of the reference frame to

integrate the sensorial signals.

Integration of Perception

We have also used an octree to represent different types

of perception (proprioception, active and predictive

perception) in the form of percepts.13

Experimental Results

Using different scenarios we were able to confirm that

our ALifeE integrates sensorial and perceptual modal-

ities in a coherent way. Figure 3 provides the overall

picture used for our experimental results.

We met our objectives using the three novel methodol-

ogies defined in this paper. We have applied this appr-

oach to a non-parametric Bayesian learning methodology,

more particularly the continuous k-nearest neighbor

(k-NN) method by using a high-speed search algorithm.20

Semantic Information forVirtual
Sensors and Perception

All the sensorial and perceptive information used in the

ALifeE framework for our application with the k-NN

algorithm are synthesized in Figure 3.

Examples ofMulti-Sensory
Integration

We have used the ALifeE framework for the exploration of

an unknown VE by an AVA. The AVA’s Internal Visual

Memory allows it to move around and navigate (Figures

4 and 5).

FutureWorkandConclusions

By combining virtual sensors and perception in the

same framework, we believe that we can significantly

reduce the dimensionality and complexity of the data

necessary in the learning of an AVA. This constitutes the

objective of our present and future research. The pro-

posed approach is a contribution to the ‘curse’ of

dimensionality, with certain learning methods.

Apart from very simple VEs, certain learning meth-

ods imply memories of unrealistic size. As the states and

actions are often infinite, it is possible to represent

different functions (for example, the utility function in

reinforced learning) by value tables. However since in

many applications the space of states and sometimes

also that of actions is continuous, the direct usage of

tables is impossible.

Our approach is closely related to the work proposed

by21 which tries to understand the perceptual organiza-

tion of the sensory field in such a way that it delivers the

highest utility to the AVA. Learning how to control the
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effectors (Figure 2) for any given set of virtual sensor

readings can be a difficult problem and is the primary

focus of many machine-learning algorithms (e.g. rein-

forcement learning). Sensations and perceptions link the

AVA’s brain to the world and allow it to provide mental

representations of reality.

However, there are some weaknesses in our approach.

The ‘cognitive maps’ give only an approximate map-

ping. And, the ‘cognitive map’ inputs must be processed

with care. The approach presented here is part of a more

complex model, which is the object of our research. The

goal is to realize a Virtual Life Environment for an AVA

Figure 3. The architecture (ALifeE) used for our experimental results. The semantic information coming from ALifeE multi-

sensorial mapping, multi-perceptive mapping and memory models is used by learning processes to establish high-level reasoning

modules or complex memory rules.

Figure 4. Application of learning an unknown VE. The

yellow-colored graphic objects are those discovered by the

AVA and are memorized in the AVA’s Internal Visual

Memory.

Figure 5. Application of Multi-Sensory VE (Vision—

Touch). Snapshot of an AVA (pink-colored triangle) using

multi-sensorial information to move around in a VE

with k-NN algorithm. Inside the red-colored pentagon:

yellow-colored triangle for 1-NN and cyan-colored triangles

for 2-NN.
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including different interfaces and sensorial modalities

coupled with different evolving learning methodologies.
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