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Abstract. Hebbian learning allows a network of spiking 
neurons to store and retrieve spatio-temporal patterns 
with a time resolution of 1 ms, despite the long post- 
synaptic and dendritic integration times. To show this, 
we introduce and analyze a model of spiking neurons, the 
spike response model, with a realistic distribution 
of axonal delays and with realistic postsynaptic poten- 
tials. Learning is performed by a local Hebbian rule 
which is based on the synchronism of presynaptic neuro- 
transmitter release and some short-acting postsynaptic 
process. The time window of this synchronism deter- 
mines the temporal resolution of pattern retrieval, which 
can be initiated by applying a short external stimulus 
pattern. Furthermore, a rate quantization is found in 
dependence upon the threshold value of the neurons, i.e., 
in a given time a pattern runs n times as often as learned, 
where n is a positive integer (n/> 0). We show that all 
information about the spike pattern is lost if only mean 
firing rates (temporal average) or ensemble activities 
(spatial average) are considered. An average over several 
retrieval runs in order to generate a post-stimulus time 
histogram may also deteriorate the signal. The full in- 
formation on a pattern is contained in the spike raster of 
a single run. Our results stress the importance, and ad- 
vantage, of coding by spatio-temporal spike patterns 
instead of firing rates and average ensemble activity. The 
implications regarding modelling and experimental data 
analysis are discussed. 

1 Introduction 

One of the most important and intriguing problems of 
neural network theory and neural data interpretation 
concerns the coding procedure which is used by a biolo- 
gical system to map data from the outside world onto 
internal network states.Most model approaches to neu- 
ral networks as well as many experiments on biological 
networks have been based on the idea that it is the mean 
firing rate which carries the essential details. This is the 
tacit assumption that has to be made if a single neuron is 
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modelled through an 'analog' or 'graded-response' unit, 
as in most backpropagation networks (Rumelhart and 
McClelland 1986) and in many other model networks 
(Hopfield 1984; Kiihn et al. 1991). The same assumption 
is often made when the neuron is described by a two-state 
spin variable as in the standard model of associative 
memory (Hopfield 1982; Amit et al. 1985, 1987). In both 
cases, the output of the model neuron can be interpreted 
as the mean firing rate (number of spikes per time inter- 
val) of an ideal biological neuron. 

The above model parallels traditional experiments 
where neurons have been studied and classified based 
mainly on their mean firing rate (Adrian 1926; Hodgkin 
1948). The experimental advantage of such an approach 
lies in the fact that mean firing rates are comparatively 
simple to measure. Once an electrode is positioned next 
to a neuron (which may require considerable experi- 
mental effort), one simply counts the number of action 
potentials and divides by the measurement time T. De- 
pending on the external stimulus the firing rate can be 
high or low. If the experiment is repeated while different 
neurons are recorded, an excitation pattern in terms of 
high and low firing rates can be measured. This pattern is 
often interpreted as the answer of the biological network 
to the specific stimulus applied in the experiment. See 
Miyashita (1988) for one recent experiment along these 
lines. 

Such an approach, however, may be too simplistic. 
Since the determination of the mean firing rate requires 
an average over a sufficiently long time interval (typically 
100 ms and more), all information about the exact firing 
times of a single neuron is lost. The firing time of a 
neuron compared with the start of a stimulus or the 
spikes of other neurons could, however, be of great 
importance for correct interpretation of the stimulus 
(Perkel et al. 1967; Gerstein and Perkel 1972; Abeles 
1982; Aertsen et al. 1986; Johannesma et al. 1986; Palm 
et al. 1988). Indeed, it has been shown in experiments on 
the fly that the timing of a single spike becomes impor- 
tant if one attempts to decode the spike train and recon- 
struct the stimulus (Bialek et al. 1991). To phrase it 
differently, a fly would be completely lost in a natural 
environment if the mean firing rate were the only available 
carrier of information. Similar results can be achieved by 
a theoretic analysis of the maximum information content 
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of neuronal spike trains. A coding scheme based on single 
spikes or interspike intervals yields a much higher in- 
formation capactiy than a rate code (MacKay and 
McCulloch 1952; Stein 1967; Abeles and Lass 1975; 
Eckhorn et al. 1976). 

To achieve a better time resolution while keeping 
a good signal-to-noise ratio, two different approaches 
have been adopted. The first is based on the assumption 
that there are large groups of neurons, e.g., columns in 
the visual cortex, which are involved in the same signal- 
processing task (Hubel and Wiesel 1962). If this were so, 
it would be enough to measure the mean or mass action 
of such a group of neurons (see, e.g., Abeles 1982). This 
can be done with a single extracellular electrode tuned to 
the global 'background '  potential of neuronal activity. If 
the group is sufficiently large and if all neurons are doing 
the same job, then the ensemble activity can also be taken 
as a measure of the typical answer of a single neuron in 
terms of spiking probabilities. If, however, neurons in this 
group have different intrinsic properties or different affer- 
ent connections or a nontrivial interconnectedness, then 
all information about  individual neurons is lost by taking 
an ensemble average. 

The second time-resolved method is the so-called 
post-stimulus time histogram (PSTH) (Perkel et al. 1967). 
After the start of the stimulus, the spikes of one or a small 
set of neurons are recorded. In a PSTH, the response is 
accumulated over several repetitions of an experiment 
with the same stimulus pattern. Such an approach, how- 
ever, is useful only if the experimental setup, in particular 
the internal state of the network, is exactly the same in 
each run. Since in most  biological systems the internal 
state of the network cannot be controlled, this condition 
is hard to fulfill under realistic circumstances. If we can- 
not assure an exact repetition of the experiment, aver- 
aging over several runs may spoil information which is 
contained in any single run. That  is why we have to take 
the results of a single run seriously. 

To sum up the above consideration, we have argued 
that the three traditional approaches - averaging over 
time to get the mean firing rate, averaging over space to 
get the ensemble average, and averaging over several 
runs to accumulate a PSTH - may miss valuable in- 
formation which is contained in the exact spiking times of 
neurons in a large network. Recent developments in 
multi-electrode recordings (Gerstein et al. 1983; Kriiger 
1983; Reitboeck 1983) make it possible to circumvent the 
above disadvantage and to measure the spikes of several 
neurons in a single run (see, e.g., Eckhorn et al. 1988; 
Kr/iger and Aiple 1988). The results are stored in terms of 
a spike raster which can be used for careful evaluation 
thereafter. 

In the present study we would like to catch up with 
these developments from a theoretical point of view. In 
our model of a neural network, the spikes of single 
neurons are in the center of interest. Each neuron is 
modelled by a threshold-fire unit with a spike-after- 
potential equivalent to an increase of a dynamic thre- 
shold. Transmission of the spikes along the axon to the 
synapse is taken into account by a delay A "x that depends 
on the distance between the soma and the synapse. If 

a spike arrives at the synapse, an excitatory or inhibitory 
postsynaptic potential (EPSP or IPSP) is induced, 
which is also described in a realistic and time-resolved 
manner. A single EPSP or IPSP can be understood 
as a neuron's response to an incoming spike. Similarly, 
the spike-after-potential or dynamic threshold is the 
neuron's internal response to spike emission. Since 
both effects are included, the model is called the spike 
response model. 

The main idea of our approach is that the answer of 
a neural system to an external stimulus consists in a 
complex spatio-temporal spike pattern which is not ne- 
cessarily associated with a change of mean firing rates or 
ensemble activities. Such a spike pattern could, in prin- 
ciple, change on a time scale of a few milliseconds, which 
is quite fast if it is compared with the mean firing rate of 
real neurons. Under these circumstances, it would be 
necessary to take a single spike seriously. If we neglect 
a temporal resolution below a single spike width, we can 
take an interval of 1 ms as the basic time step of neuronal 
signal processing in our model. 

In view of the much longer synaptic and dendritic 
integration time constants (typically 5-50 ms) the follow- 
ing questions appear. Is it really necessary to construct 
a model with a time resolution of 1 ms? Is it at all possible 
to store time-resolved excitation patterns in the synaptic 
efficacies despite the long postsynaptic integration time? 
Furthermore, is it possible to "learn" spatio-temporal 
activation patterns by a "Hebbian" learning rule? The 
answer to these questions is affirmative and will be given 
in Sect. 2. 

If this is done, we can address the central question 
outlined above: How is the information on the stimulus 
and, more generally, on the outside world encoded in the 
network? Can it be found in the mean firing rates, 
ensemble activities, or in the PSTH, or do we need the 
exact firing time of each spike of every neuron? Using 
some generic examples we show in Sect. 3 that complex 
spatio-temporal spike patterns require the full informa- 
tion contained in the spike raster of a single run. If only 
mean firing rates, ensemble activities or PSTHs are con- 
sidered, information contained in the correlations of the 
spikes of different neurons can be missed. If spike rasters 
of several runs of the experiment are available, they can 
be used to determine the averaged cross-correlation 
between pairs of neurons explicitly. In any case, 
averaging - be it over space, time, or repeated runs 
- should come at the end of the evaluation procedure and 
should not be a tacit assumption underlying models or 
experiments. Conclusions from the results of Sect. 3 are 
drawn in Sect. 4. 

2 Model network 

Our network (Fig. 1) consists of N model neurons which 
are fully connected via asymmetric "Hebbian"  synapses. 
The neurons communicate with each other through the 
exchange of spikes which are transmitted along the 
axons. If a spike passes a synapse, an EPSP is evoked at 
the soma of the receiving neuron. Furthermore, spike 
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Fig. 1. Network structure. Each pair of neurons in the network layer is 
connected by several synapses located at different positions along the 
axon of the presynaptic neuron. In addition to the internal synaptic 
contributions, each neuron receives an external stimulus from the 
receptor layer and a common signal from the background of the 
network. One inhibitory neuron controls the activity of the whole 
network 

various elements of  our  model  system are analyzed in 
more  detail in the following subsections. 

2.1 Model o f  spike generation in a single neuron 

The description of  a single model  neuron  i is based on 
three classical not ions of  neurobiology,  namely, firing 
threshold, refractoriness, and noise. The model  has been 
discussed in extenso by Gers tner  and van H e m m e n  
(1992a) and will be reviewed briefly here. In  a noiseless 
idealization, a spike would  be induced as soon as the 
membrane  potential  h~(t) exceeds a threshold 0. But 
due to omnipresent  noise, the actual spike ma y  occur  
a little too  early or  too  late compared  with the formal 
threshold crossing time. To take this into account,  we 
int roduce the probabil i ty P r  of  firing during a short  time 
interval between t and t + At given a membrane  
potential  h~(t): 

PF(AtIh,) = 1 - e x p [  - dt/z(h,)] 

1.0 

0 . 0  30~0 1 0 . 0  2 0 . 0  
s [ m s ]  

Fig. 2. Excitatory postsynaptic potential (EPSP). The typical response 
e(s) at the soma of a postsynaptic neuron is plotted as a function of time 
after firing of a presynaptic spike. There is no signal for the first few 
milliseconds due to the axonal delay 1 ~< A ~ ~< 4 ms (here d *x = 2 ms). 
The rise time of the response is z, = 3 ms, the overall duration (width of 
half-maximum) approximately 8 ms. The response function e(s) is nor- 
malized to 1 and has to be weighted with the synaptic efficacy factor 
J~'~ to get the EPSP 

At/z(hi) for At ~ z(h~) (1) 

The response constant  z(hi)=lima,~o[At/Pr(Atlhi)] 
gives the mean delay of  a spike - averaged over repeated 
runs. As a model  assumpt ion we take in analogy to the 
Arrhenius law 

z(hi) = zoexp [ - f l (h i -  0)] (2) 

where z0 is the response constant  at threshold. In the 
limit of  a noiseless neuron (fl ~ go ), (2) reduces to 

{ go for hi<O 

z(hi) = Zo for h i = O  

0 for h~ > 0 

(3) 

emission results in an increased firing threshold at the 
soma of  the sender neuron  (spike response model,  SRM). 

Spikes of  neuron j are considered as point-like events 
and described by a Dirac h-function 6(t - i f )  where t f  is 
the firing time of  the fth spike of  neuron j. The E P S P  
evoked at neuron  i is described by a realistic response 
function which extends over several milliseconds (Fig. 2). 
In  our  discrete-time model,  the E P S P  is quant ized in 
steps of  1 ms. The E P S P s  of  all signals arriving at neuron 
i are added linearly and yield the total postsynapt ic  
potential  h~r"(t). Fo r  the sake of  convenience only, 
a single inhibitory neuron  which is connected to all 
neurons controls  the total activity of  the network 
th rough  a cont inuous  inhibitory signal h~"h(t). In  reality 
inhibition is local. In addit ion to these internal contr ibu-  
tions, each neuron  receives act ion potentials f rom a re- 
ceptor  layer th rough  an input  channel h [xt(t). All neurons 
also receive a c o m m o n  slowly varying background  signal 
h~*ck(t) which is the same for all neurons.  It describes an 
average signal f rom other parts  of  the network which are 
not  modelled explicitly, e.g., f rom higher areas involved 
in association and complex signal processing tasks. The 

Thus  neuron i stays quiescent if hi < 0 (z = ~ ) and fires 
immediat ley if hi > 0 (~ = 0). 

Whenever  a real neuron  fires, a complicated sequence 
of  channel  opening and closing is induced at the mem-  
brane of  its axon  as well as of  its dendrit ic tree. The net 
result is a sharp spike and various spike after-potentials. 
Some of  these potentials,  e,g., the late after-hyperpolariz-  
at ion (AHP), have very long time constants  of  up to 
100 ms and more  (Lancaster  and Adams  1986). In order  
to describe possible spike after-potentials or, accordingly, 
dynamic  increases in threshold in a qualitative model  we 
add after each spike a refractory potential  

h[ef(t) = ~ ~ d z r / ( z ) ~ ( t -  z - tfl) (4) f=l 0 
where t{ with f = 1 . . . .  , F are the mos t  recent firing 
times of  neuron  i. F is a useful parameter  that  allows 
switching between adaptive and non-adapt ive  behavior.  
Fo r  F = 1 firing is a mathemat ical  renewal process, since 
only the last spike contributes.  Fo r  F > 1 the model  
exhibits adaptive behavior.  
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The refractory function q(~) describes a neuron's 
response to spike emission and is given by 

- ~ for 0 < T ~< "ere f 

?l(T) "~- - -  q A H P / (  z - -  "~ref) for Tre f < "~ < Zraax (5) 

0 otherwise 

It has two effects. First, the infinite negative contribution 
for times z < z,~: (where z,~: is the absolute refractory 
period) is a formal way to model refractoriness. The strict 
inhibition prevents the immediate emission of another 
spike during a time z,~: if a spike has been fired at z = 0. 
Second, for z > z,,: we include a slowly decaying inhibit- 
ory tail. This is a convenient way to model post-spike 
refractoriness as being due to K inactivation. The main 
effect of refractoriness or AHP is a higher effective thresh- 
old for the firing of a second and a third spike following 
a first spike. 

In the simulations presented in Sect. 3, we take an 
absolute refractory time of z,~: = 3 ms, an AHP potential 
of tl Ant" = 3 input units (i.u.) and a threshold 0 = 0.20 i.u. 
The AHP ends at z,,o~ = 100 ms. Unless stated otherwise 
the noise parameter is fl = 12. The gain function of 
a model neuron with these parameters exhibits a "soft" 
threshold at h ~ 0.5 i.u. and a maximum firing rate of 
330 Hz. A thorough discussion of the model neuron that 
includes typical spike trains and an exact expression for 
the mean firing rate at various input levels can be found 
in Gerstner and van Hemmen (1992a) and Gerstner 
(1993). For  the following it is sufficient to note that such 
a model neuron has a reasonable gain function and is 
able to generate realistic spike trains. 

2.2 Synaptic transmission 

In our network each pair of neurons is connected by 
several synapses (Creutzfeldt 1983). They are located at 
different positions along the axon of the presynaptic 
neuron. If one of the neurons - say neuron j - fires, 
a spike is transmitted along the axon and induces - after 
a delay d ~ - a postsynaptic signal at the receiving neur- 
on i. The delay A ~ depends on the position of the specific 
synapse on the axon and varies in our simulation be- 
tween Ami, = 1 ms and A,,~ = 4 ms. To phrase it differ- 
ently: Given that neuron j fires, neuron i is affected after 
1, 2, 3, and 4 ms but the synaptic efficacies may differ for 
the four delays. This may seem a rather implausible 
assumption since synaptic contacts of a single neuron to 
another neuron are unlikely to span time differences as 
large as 4 ms. The model can, however, be changed to the 
diluted case where three of the four connections are cut at 
random. The remaining connection has only one delay 
with 1 ~< A ~x ~< 4 ms, which seems to be a realistic range. 
The important  point is that the synaptic efficacy of a con- 
nection f romj  to i depends not only o n j  and i but also on 
the delay; this will be explained below. 

Whereas the axonal spike is a soliton-like event, 
sharply located in space and time, the response of the 
postsynaptic neuron is smeared out and gives a much 
broader signal at the soma, the EPSP. The EPSP has 
been repeatedly measured in experiments and can be 

described by an s-function (Jack et al. 1975) 

e(z)=-T e x p ( 1 - ~ s )  rs (6) 

which is shown in Fig. 2. It is normalized to a maximum 
value of 1 i.u. For  the time constant we take rs = 3 ms. 
Thus, in our discrete-time model the rising time en- 
compasses three time steps. 

Whereas the time course e(r) of the EPSP is taken to 
be the same for all neurons and synapses, the amplitude 
of the response is specific for a single synapse. It depends 
on the pair (i, j)  of neurons as well as on the position of 
the synapse on the axon as indicated by the delay A ax and 
is described by a synaptic efficacy factor I :.~x How the 
synaptic efficacy can be adjusted by a Hebbian learning 
rule will be discussed in the next subsection. At the 
moment we simply assume that all I .~.~x _,j are known and 
kept constant. 

The synaptic signals received by neuron i can be 
added so as to find the total postsynaptic potential 

h~"(t) = Z Z Z ln~x-,J dse(s) 6 ( t -  s -  A"X- tf ) 
j = l  Aax=drain f = l  0 

(7) 

For the sake of simplicity, we have assumed in (7) that all 
contributions add up linearly. It is straightforward to allow 
for more complicated interactions. In analogy to the 
excitatory synaptic contribution we model the inhibitory 
signal by 

N dmax n! ar 

h~"h( t)= -- E E E J ~  ~ d s e ( s ) f ( t - s - d ~ - t ~ )  
j=  1 AaX=drain f =  1 0 

(8) 

In contrast to (7), the inhibitory synaptic efficacy ji,h is 
identical for all neurons and all synapses. It is adjusted 
according to the firing probability p in the spike patterns 
the system has been trained on. During the simulations of 
Sect. 3 it is set to ji,h = p = 0.025. 

Equations (7) and (8) show that the postsynaptic 
neuron sums over the signals from all other neurons 
(spatial average) and integrates over the past (temporal 
average). Based on this observation, it has often been 
argued that quantities that average over space (ensemble 
activity) or time (mean firing rate) should be sufficient to 
describe the states of the network. The results of Sect. 3, 
will show, however, that the network is capable of storing 
and retrieving patterns with high resolution in space and 
time - despite the postsynaptic averaging. This clearly 
underlines the potential relevance of non-averaged or 
"local" information in neural networks. 

In order to store those time-resolved excitation pat- 
terns, the efficacies have to be adjusted according to 
a "Hebbian" learning rule. How this can be done will be 
explained now. 

2.3 Hebbian learning 

As a basic principle of synaptic learning, Hebb (1949) 
postulated that synaptic efficacies are enhanced during 



~t 

b 

strong potentation 

p o s t s y n .  

p r e s y n .  

~ n t  

/ X -  

I 
t' A'~ 

n o  p o t e n t a t i o n  

p o s t s y n .  

p r e s y n .  

~ n t  

I 

. - - .  E P S P  

I 
t, 

e lec t r i ca l  

:~ t 

c h e m i c a l  

t 

e lec t r i ca l  

e lec t r ic  

:~ t 

c h e m i c a l  

:" t 

e lec t r ic  

507 

Fig. 3a, k Hebbian learning at the 
synapse. The presynaptic neuron j fires at 
time t f  and the postsynaptic neuron i at t{. 
It takes a time A ~ and A ae', respectively, 
before the signal arrives at the synapse. At 
the presynaptic terminal neurotransmit ter  
is released (shaded) and evokes an EPSP 
(dashed) at the postsynaptic neuron. In 
a the dendritic spike arrives slightly after 
the neurotransmit ter  release and matches 
the time window defined by some chemical 
processes, so the synaptic efficacy is 
enhanced. In b the postsynaptic neuron 
has fired too early and no strengthening of 
the synapse occurs 

periods of simultaneous activity of the presynaptic and 
postsynaptic neurons. Long-term potentiation (LTP), 
which has been found in hippocampal brain slices, seems 
to support this postulate (Kelso et al. 1986; Brown 
et al. 1989, 1991). In most experiments on LTP and in 
many models of Hebbian learning the terminology of 
"simultaneous activity" is understood as a time-averaged 
quantity, e.g., mean firing rate or mean membrane volt- 
age. In our approach we shift emphasis to single spikes 
and EPSPs and consider the momentary state of pre- and 
postsynaptic membrane directly at the synapse. The main 
idea is that only those quantities which are locally avail- 
able at the synapse can lead to a change of synaptic 
efficacy (Herz et al. 1988, 1989). 

In order to make these ideas more precise, we con- 
T Z l a X  I"  sider a synapse a o trom neuronj  to neuron i (see Fig. 3). 

If neuron j fires at time tf ,  a spike is transmitted along 
the axon and arrives after a time A ax at the synapse of 

IdY" Here it induces the release of neurotran- strength -o  �9 
smitter substance which finally evokes an EPSP at the 
postsynaptic neuron i. Let us now assume that neuron 
i has also fired, but at a different time t{. When and how 
does information about the postsynaptic spiking arrive 
at the synapse? As a solution to this question we tenta- 
tively suggest that firing causes not only emission of an 
action potential along the axon, but also some dendritic 

pulse that spreads by (active or passive) transport over 
the dendritic tree. While active transport is known in the 
hippocampus (Wong et al. 1979), it has, so far, not been 
seen in the neocortex. The relevance of these pulses to 
synaptic coding has not been discussed so far. The impor- 
tant point in this context is that active processes would 
allow the pulse to remain a point-like event, local in space 
and time. A synapse could thus receive precise time- 
resolved information on postsynaptic spiking. 

As to synaptic learning, we propose that a strengthen- 
ing of the synapse occurs only if the dendritic pulse 
arrives at the synapse concurrently with (or slightly after) 
the neurotransmitter (or some other messenger sub- 
stance) released from the presynaptic terminal. At this 
point our assumption is purely speculative. Most experi- 
ments have studied, not the detailed time structure of 
LTP, but rather mean activity. Dendritic pulses have not 
yet been considered in this context. Let us assume that 
the arrival of transmitter substance peaks within 1 ms 
after the beginning of presynaptic release. This defines 
a narrow time window v (t) for a match with the dendritic 
pulse: 

v(t) = exp [ - 5 ~-~.r / A (9) 
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(see also Fig. 3). Synaptic efficacy is enhanced only if the 
signal of the dendritic pulse arrives during the time of 
transmitter release v(t)  due to a presynaptic spike. This is 
our precise interpretation of the phrase "simultaneous 
activity". 

Adaptation of synaptic efficacies is done during a sep- 
arate learning session of total length T = ~q  ~ T u. Dur- 
�9 . ~ =  , . 
lng the training period T ~ a spatlo-temporal excitation 
pattern p with 1 ~</~ ~< q is forced upon the network. Let 
t{(lO and t~(p) denote the firing times of the post- and 
presynaptic neuron. The presynaptic spike needs a time 
A "x to travel to the synapse J~~ the postsynaptic pulse 
arrives there after a time A n~"'. To keep arguments simple, 
we assume that the dendritic delay A n~"t is independent of 
the position of the synapse on the dendritic tree�9 In view 
of the above considerations, a change of efficacy for 
a synapse with delay A ~ is - after the presentation of 
pattern p - given by 

F~' T ~' 

6Jr ~ ~ ~ dt  6(t - A d e n t -  t f ( l t ) )  
f = l  0 

F~ co 

• Z ~ ds v(s)a( t  - A ~ - t~ - s) (10) 
g = l  0 

The total number  of spikes neuron i has to fire to gener- 
ate the pattern/~ is denoted by F~'. The first 6 function on 
the right-hand side of (10) describes the postsynapt ic  
activity at the location of the synapse, the second 6 func- 
tion the presynapt ic  activity. A strengthening of the 
synapse occurs only if the two activities coincide within 
a time window defined by v(s). The integrals over time 
can be performed out, yielding 

F~ F~ 

6J~~ = ct u ~ ~ v ( t { ( l ~ ) -  t~(#) + A d~"' - A~X)(ll) 
f = l  g = l  

where ~t u is some proport ionali ty factor. It  is a free 
parameter  and can be used to normalize the right-hand 
side of (11). To keep things simple we assume that all 
neurons have the same mean firing rate and fire exactly 
F~' = F~-= F u spikes during the training session T u. 
A useful normalization is then 0~u = 1/F ~. 

Several spat io-temporal  excitation patterns can be 
learned subsequently by the same procedure. We assume 
that the final strength of the synapse is given by a linear 
superposition of all contributions: 

i.z?x ~ox 1 
= 6Jij  (1~)= - , j  ff-~ v(t{(l~) - -  t~ 

U = I  ~ = 1  f ,  = 1 

+ A a~" ' -  A ~ )  (12) 

After the training session the efficacies are kept at a fixed 
value. Retrieval of the excitation patterns can be induced 
by a short external signal (see Sect. 3). 

Before proceeding to simulations of a special system 
we would like to explain how the system works in the 
general case. A neuron which has fired at t = 0 is inhib- 
ited thereafter by its own refractory field. As a conse- 
quence it has a reduced excitability (higher threshold). 
Only if the post-synaptic potential, h~r"(t) is strong 
enough to exceed threshold, h~r"(t) + h'::(t)  > 0, can it 

I I 

h,( t)  ~, O - h  ~t 

x 

0 

:?_}// / / / A / / /  , 

- - - -  : / / 7 / /  

Fig. 4. Learning and retrieval. Neuron i, which has fired at t = 0 
(marked by a black dot), is subject thereafter to a refractory field h'::(t) 
equivalent to an increase of a dynamic threshold 0 - h'::(t) (dashed). It 
fires again if the postsynaptic potential is strong enough, viz., 
h~r"(t) = 0 - h~e:(t) (top). h~r"(t) is induced by the action potentials of 
neurons which have fired a few milliseconds before. The Hebbian 
learning rule strengthens only those connections with appropriate delay 
(thick lines) whereas others remain weak (thin lines). A neuron j which 
has fired much earlier does not contribute at all 

fire again. The postsynaptic potential, h~r"(t), is the sum 
of all incoming EPSPs. Let us now assume that the 
network has to learn a spike pattern where neuron 
i should fire again at t{. The learning rule (12) enhances 
only those connections where the EPSP has the correct 
timing so as to cause i to fire at t{  (see Fig. 4). This 
argument shows that the above learning rule should 
allow the storage of fairly arbitrary spike patterns. For 
the sake of simplicity we have restricted our simulations 
to the special case of cyclic patterns. The main results, 
however, are much more general. 

3 Simulation results 

3.1 Low-act iv i ty  random patterns 

A network of N = 1000 neurons has been trained on 
q = 4 patterns. The procedure easily takes care of many 
more patterns, but q = 4 is convenient for simulation. 
Each pattern coinsists of a sequence of spikes from differ- 
ent neurons during a time window of T = 40 time steps, 
i.e., 40 ms. The sequence is then repeated. A spike pattern 
/~ (1 ~< # ~< q) is defined by exactly one firing time t{(l~) 
for each single neuron 1 ~< i ~< N. The firing time is 
drawn from a random distribution with equal probability 
p = 0.025 for all times 1 ~< t{(t~) <<. 40. Thus, in an ideal 
and noiseless pattern all neurons fire regularly with a rate 
of 25 Hz, but the firing of different neurons is randomly 
correlated. 

During the training session all spike patterns 
1 ~< p ~< q are forced upon the neurons and the synaptic 
efficacies are adjusted according to (12). In order to check 
whether the patterns are now stable attractors of the 
neuronal dynamics, retrieval of the patterns has to be 
studied. A retrieval session is started by a short external 
stimulus of duration ti.~t = 5 ms. It  consists of a spatio- 
temporal  sequence of short pulses h~Xt(t)= f i t ,  t { (#)  
- T] for -- 5 ~< t < 0 ms. In other words, the network is 
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Fig. 5. Retrieval of spatio-temporal spike pat- 
terns. Four  runs have been plotted, showing the 
retrieval of four different patterns (I-IV). A short 
(5 ms) simulating pulse just before the start of the 
recording (t = 0) induces the network response 
shown in I-IV. In a the ensemble activity aver- 
aged over all neurons of the net is plotted. Part 
b shows the spike raster of 30 neurons. Each spike 
t{ of neuron i (y-axis) is marked as a filled circle at 
the time of firing (x-axis). For ease of visualiz- 
ation, the lower ten neurons have learned different 
stripe patterns. Based on the spatio-temporal cor- 
relations, the pattern detector c classifies the spike 
pattern. In d the mean firing rate (x-axis) of the 30 
neurons (y-axis) is shown. Note that both the 
mean firing rate and the ensemble activity are 
similar in all runs and are not useful in distin- 
guishing the patterns 
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initialized during 5 ms in a state consistent with one 
of the learned patterns. The pattern /~ that is matched 
should be completed and cyclically retrieved afterwards. 

The results of four retrieval sessions with different 
stimuli are shown in Fig. 5. For  the four patterns (I-IV), 
the ensemble activity (spatial average) during retrieval 
is plotted in panel a and the spike raster of the 
retrieval session is shown in b. In c the spike pattern is 
classified, and in d the mean firing rate of the neurons is 
calculated. 

Let us discuss the spike raster (Fig. 5Ib-IVb) first. In 
a way similar to experimental multi-electrode recordings, 
we have selected 30 neurons which are numbered and 
plotted along the y-axis. Time is plotted along the x-axis. 
The origin t = 0 marks the end of the stimulus, thus for 
all t/> 0 we have h~Xt(t) = 0. In this subsection, we have 
also assumed that h~ack(t)= 0. All spikes of neuron i 
appear as black dots along a line parallel to the x-axis. If 
we count the number of spikes along this line and divide 
by the total recording time ( T =  200 ms), we find the 
mean firing rate of this neuron. This is the quantity which 
is plotted in d, to the right of the spike raster. We see that 
all neurons have approximately the same firing rate, 
25 Hz. Thus, if we consider the mean firing rate only, we 
can detect no significant structure in the firing behavior 
of the neurons. 

Instead of averaging over time we can also average 
over space so as to define the ensemble activity of the 
network. If we count the number of spikes in every 
millisecond (along a vertical line in the spike raster) and 
divide by the total number of neurons, we find the en- 
semble activity plotted in a. We see that immediately 
after the stimulus the ensemble activity is high ( ~ 5%), 
but due to adaptation it decreases. After 50 ms it has 
settled to an average of 2.5~ and no significant structure 
is left. Nevertheless, if we look at the spike raster (b), we 
see that the network remains in a regular firing state. The 
specific spike pattern has been induced by the stimulus 
and is different for parts I - IV of Fig. 5. 

For  ease of visualization of this fact, we have used 
a little trick. Neurons with index 1-10 did not learn 
random patterns but "meaningful" objects such as diag- 
onal stripes (see the spike raster Ib-IVb). Ten neurons 
hardly disturb a network of N = 1000 neurons, but they 
can help the human reader to find regularities and to 
recognize different patterns. 

The pattern detector (c) distinguishes the patterns 
based on the correlations between the spikes of all 
neurons in the net. A pattern/~ is detected if the firing 
times during the last 40 ms match the time shifted spike 
raster of pattern #. To be more specific, we define a cor- 
relation function 

3 9  

corrU(t) = -~ ~ 6 It - t{, ~] 6 [40 - t{(#), z] 
i = 1  ' r=O 

(13) 

where 6 Ix, y] denotes the Kronecker 6 with 6 Ix, y] = 1 
for x = y and 0 otherwise. A detector signal D r = + 1 
is given if corr(t)>~ 0.5 during the simulation run 
(0 < t < 200). Thus we require that 50% of the spikes 
must be correlated exactly with spike pattern ~t. 

If we analyze the series of Fig. 5, I-IV, a number of 
conclusions can be drawn. First of all, it is indeed pos- 
sible to store and retrieve spatio-temporal spike patterns 
with a time resolution of 1 ms in a neural network with 
biological constraints. This is quite remarkable in view 
of the typical duration of an EPSP (approximately 
5-15 ms). Second, several patterns can be stored in the 
same network. In analogy to the storage capacity calcu- 
lations of Gardner (1988) we expect that the number of 
spatio-temporal spike patterns of duration T that can be 
stored in an optimally designed network of N neurons is 
proportional to NC/( Tplln P I), where C is the connect- 
ivity per neuron (here C = 4) and p ~ 1 is the globally 
averaged activity of a typical spatio-temporal pattern. 
From the static case it is known that optimal storage 
requires a long iterative learning procedure (Krauth and 
Mrzard 1987), whereas a standard single-step learning 
rule yields a reduced capacity ~ = 0.14 (Amit et al. 
1987). The same result, ~c = 0.14, also holds for cyclic 
patterns in a model network with a given distribution of 
delays (Herz et al. 1991). These arguments lead to the 
estimation that our model network of N = 1000 neurons 
with p = 1/T = 0.025 should be capable of storing rough- 
ly 100 patterns. Exact answers to the question of storage 
capacity are presently under investigation. 

Comparing panels d and a in Fig. 5, I-IV, we see that 
neither the mean firing rate nor the ensemble activity 
contains significant structure that would suffice to distin- 
guish the four patterns. Nevertheless, the time-resolved 
spike raster shows that the four patterns can be retrieved 
and distinguished. This is confirmed by the pattern de- 
tector, which measures the correlations in the spiking of 
different neurons, but, of course, this could also be done by 
a neuron or cluster of neurons which has learned exactly 
this classification in the same way as described before. 
Methods that are based on mean firing rates or ensemble 
activities would miss the information contained in the 
time-resolved spike raster. The above examples clearly 
show that single spikes can carry important information. 

3.2 PSTH analysis 

The arguments used so far have been based on the results 
of a single run of the experiment. If several runs are made, 
the resulting spike raster may, and usually will, look 
different every time. This is partly due to noise in neurons 
and synapses that induces variability on a fast time scale. 
Much greater variability, however, comes from the fact 
that other areas of the neural system which are out of 
control of the experimenter influence the network state. 
In real systems, only a small portion of the brain is 
connected directly to the sensory receptors. The major 
part is involved with further processing of incoming 
signals and acts somewhere in the background. Due to 
feedback connections, the processing state of the "back- 
ground" influences the firing state of the primary areas. 

We have modelled this effect very crudely by a single 
feedback signal hblack(t) that acts identically on all 
neurons in the "primary" network and varies only slowly 
in time. To be specific, we now assume that the back- 
ground signal h~ack(t) varies stochastically every 120 ms 
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Fig. 7. Spike raster during two of the 15 runs of Fig. 6. The spikes of 30 
neurons are plotted between 1000 and 1500 ms after the stimulating 
pulse. Both spike rasters exhibit the diagonal stripes of pattern 1; cf. 
Fig. 6. The spike raster of a single run carries information which is 
hidden in the noisy part of the PSTH of Fig. 6 (1000 ~< t ~< 1500) 

in a range of _ 0.15 i.u. with equal probabili ty rh~ack(t) 
was assumed to be zero in Sect. 3.1]. This rather long 
variation time has been chosen in order to distinguish the 
background signal from the effects of noise in each neur- 
ons; see (1). An 8-10 Hz input also looks reasonable in 
view of a possible thalamic origin of these variations. 

The results of 15 runs over 1500 ms are added and 
a PSTH is computed for neurons 1 and 8 (Fig. 6). For  
both neurons we find a clear oscillatory (stimulus locked) 
structure with a frequency about  20 Hz, which is the 
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same as in Fig. 5. It  is sustained during the first 600 ms. 
For  times longer than 800 ms the signal disappears in 
a noisy background. 

It  is now tempting to conclude that the network 
which has been triggered by an external stimulus at t = 0 
has lost all information about  the stimulus after 800 ms. 
This conclusion, however, is wrong, as is shown in Fig. 7, 
where the spike raster in two of the 15 runs is plotted for 
times between 1000 and 1500 ms. We clearly see that the 
spike pattern is still fully sustained - despite the fact that 
the PSTH contains no information for t 1> 800 ms. An 
explanation of this difference can be found if we compare 
the spike rasters of the first and second run of Fig. 7 in 
more detail. There is a phase shift in the spike pattern of 
the two runs. Adding several spike patterns with different 
phases yields the "noisy" PSTH of Fig. 6. 

To summarize this subsection, we have shown in 
a simple example that information which is contained in 
a single run of the experiment may be lost in the PSTH 
which is accumulated over several runs. Due to back- 
ground activity which cannot be controlled by the experi- 
menter, the response to a stimulus is usually different from 
one run to the next. Averaging over several runs may then 
spoil the results. Because of this we would like to empha- 
size the importance of the spike raster of a single run. 

3.3 Rate quantization 

In which way does the signal from the background affect 
the spike pattern? To answer this question we now adopt  
an approach that allows us - in contrast  to the experi- 
mental situation - to control the background activity. 
Indeed, in a computer  experiment we can change the 
background activity h~=k(t) systematically from low to 
high. The results have been plotted in Fig. 8. 

The external stimulus is, as before, a short 5 ms pulse 
and is identical in each run. In the first run, Fig. 81, 
background activity is low, h~=k(t)--O.O5i.u. The 
result is the same as in Fig. 5a, except for a phase shift of 
the response. If  the background activity is high, 
h~=k(t) =- 0.2 i.u., the network is driven into a state with 
doubled firing rate and twice the activity (Fig. 8, II). If  the 
background input is even stronger, h~"ck(t)= 0.35 i.u., 
rates can even be three times as high (Fig. 8111). We call 
this phenomenon rate quantization because a pattern is 
recalled n times as often as learned where n is a positive 
integer (n 1> 0). Nevertheless, a glance at the spike raster 
b reveals that the pattern can still be recognized as 
a spatio-temporal  entity. Figure 8, II  is the same as 
Fig. 8, I except that the pattern evolves twice as often. 
This is confirmed by the pattern detector c, which counts 
twice as many instances of pattern 1. In Fig. 8, III ,  the 
pattern detector fails, but a closer look at the spike raster 
reveals that pattern 1 ("diagonal stripes for the lower 10 
neurons") can still be identified. It  now runs three times 
as often in a given time interval of, say, 40 ms. Keeping its 
time structure, the pattern appears once (I), twice (II), or 
thrice (III) during this time interval. In short, it does not 
run faster but, instead, it appears  more often. 

In our model this type of rate quantization is due to 
the fact that the prototype of each spatio-temporal  
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Fig. 8. Rate quantization. Frequency doubling 
and tripling appears under the influence of 
a background signal, say, from a higher cortical 
area. a Ensemble activity, b spike raster, c pattern 
detector, and d mean firing rate are as in Fig. 5. 
A 5-ms pulse stimulating pattern 1 is applied just 
before the start of the recording. If the level of the 
background activity is changed, mean firing rate 
and ensemble activity can be twice 
(ll, h~=ck(o=0.20 i.u.) or even three times 
(III, h~=ck(t) = 0.35 i.u.) as high as in the reference 
run (I, h~'ck(t) = 0.05 i.u.). Nevertheless the time 
structure of the excitation pattern (diagonal 
stripes matching pattern 1) is always the same 

pattern consists in a closed cycle of length T, i.e., the state 
at time t + T is identical to the state at t. Higher rates 
correspond to the second and third harmonics of the 
basic cycle. In real biological systems it is rather unlikely 
that a spatio-temporal spike pattern is a closed cycle of 
definite length. Instead it could consist in a long spatio- 
temporal sequence that finally stops. It is nevertheless 

tempting to speculate that a similar rate quantization 
exists. This could be the case if, for high background 
activity, each spike at time t{(#) is replaced by a short 
burst of two or three spikes while the overall pattern is 
preserved. To phrase it differently, the coarse time struc- 
ture of the spike pattern may be always the same, despite 
large differences in the rates. 



4 Discussion 

We have presented a rather crude model of a neural 
network with time-resolved learning and retrieval cap- 
abilities. Spike emission and reception is described by 
two response functions, viz., the refractory function ~/(s) 
and the EPSP e(s) (spike response model, SRM). In our 
present network, there is only a single type of model 
neuron, whereas several classes of neurons with a variety 
of intrinsic characteristics are found in real neural struc- 
tures. Each pair of neurons in our model is connected by 
exactly four synapses, whereas the connectivity in real 
neural systems is much more complex. Inhibition has 
been modelled in a coarse way by a single activity- 
dependent neuron, whereas in reality inhibition is local. 
We have described a homogeneous network, while natu- 
ral brains are organized in several distinct areas and 
layers. Areas in the background have been mimicked by 
a single feedback channel which sends identical signal to 
all neurons in the "primary" network. In all these re- 
spects, our model network can only be a rough approx- 
imation of real neural systems. 

On the other hand, our modelling approach is care- 
fully crafted with regard to the time constants of neural 
systems. We have assumed realistic axonal delays 
ranging from 1 to 4 ms. We have also attempted to 
describe the EPSP realistically (see Fig. 2). Our model 
EPSP has a rise time of 3 ms and a slowly decaying tail. 
The overall duration (width of half-maximum) is approx- 
imately 8 ms, in good agreement with experimental data 
(Brown et al. 1989). The model of a single neuron in our 
network includes an absolute refractory time of 3 ms and 
an AHP potential with long time constants. The exact 
numerical values are somewhat arbitrary, but they lie in 
a reasonable regime. As a result, both spike train and 
gain function have a realistic shape (Gerstner and van 
Hemmen 1992a). 

Based on our careful modelling of biological time 
constants, we have tried to answer the central question of 
this paper: What is the physiologically relevant time scale 
of neuronal signal processing? Regarding the long post- 
synaptic integration time and spatial summation per- 
formed on the dendritic tree, it has sometimes been 
argued that relevant changes should occur on a time 
scale of 100 ms and more (Amit and Tsodyks 1991). The 
results of Sect. 3, however, show that it is possible to store 
and retrieve information with a time resolution of 1 ms. 

Description of signal transmission times also allows 
some insight into the timing necessary for Hebbian learn- 
ing of spike patterns. Our Eq. (12) requires that precise 
information on the firing of pre- and postsynaptic neur- 
ons be available at the synapse. A similar formula for 
Hebbian learning of spatio-temporal excitation patterns 
has been derived by Herz et al. (1988, 1989). We note, 
however, two major differences. First, Herz et al. assume 
a much slower time scale for the overall performance of 
their network. Temporal changes of the activity pattern 
occur during times which are long compared to the 
dendritic integration time and internal time constants of 
the neurons. To induce temporal sequences they conse- 
quently need very long axonal, or other, delays (up to 

513 

20 ms), a fact which has been subject to criticism. The 
present model, however, uses short axonal delays (be- 
tween 1 and 4 ms), for which there is stronger experi- 
mental evidence. The second difference stems from the 
distinction between electrical and chemical processes 
which we make in the present model. This allows us to 
apply a narrow coincidence window - described by the 
messenger release v(z) - to define simultaneous pre- and 
postsynaptic activity. If LTP were induced by electrical 
processes only, the electrical response e(z) would define 
the time window - acting on a much slower time scale. 
The chemical processes, however, which somehow induce 
the electrical response may be much sharper than the 
EPSP. Since the sharp presynaptic signal is combined 
with an equally sharp dendritic pulse we get the high time 
resolution necessary to store fast spatio-temporal excita- 
tion patterns. 

By way of example we have shown that retrieval of 
spike patterns with a resolution of 1 ms is possible des- 
pite the much longer dendritic integration time. This is 
a theoretical result based mainly on computer simula- 
tions. It does not imply that all biological systems 
actually work on such fast a time scale. On the other 
hand, we may ask why nature should not make use of this 
possibility. Experience tells us that evolution grasps most 
opportunities of improvement. In all cases where a "fast" 
system is somehow "better" than a slow one, we would 
therefore expect that single spikes and their cross-cor- 
relations become important. A fly rushing around at high 
speed through an unknown environment is an example of 
an animal that needs a fast reaction time. Indeed, it has 
been shown experimentally that spikes are of eminent 
importance for signal processing in the fly (Bialek et al. 
1991). 

If it is true that single spikes are relevant, some 
traditional methods of data analysis and several assump- 
tions of model approaches need to be reconsidered care- 
fully. Future experiments should be checked for the 
appropriate time resolution. This can be clone by ana- 
lyzing the information content of the experimental data 
with variable resolution. A time resolution of down to 
1 ms could be necessary, but a resolution of 10 or 30 ms 
seems to be enough in most cases where such an analysis 
has been carried through so far (Optican and Richmond 
1987; Kriiger and Becker 1991; Eskandar et al. 1992). 
Post-stimulus time histograms should be used for time- 
resolved data analysis only if the sources of noise are 
known and if responses do not vary too much from trial 
to trial. 

Similar considerations hold for theoretical ap- 
proaches to network modelling. In vertebrates, a network 
of analog neurons should be used only in those cases 
where the relevant states can be defined in terms of mean 
firing rates. The standard model of associative memory 
(Hopfield 1982) is an example of a system whose station- 
ary behavior is independent of the model neuron (Hop- 
field 1984; Gerstner and van Hemmen 1992b). In general, 
stationary states can be fully described by mean firing 
rates. In all time-dependent problems, however, spiking 
is essential and the type of model neuron that is used as 
the basic unit of a neural network has to be chosen 
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carefully. In particular, if activity patterns that change on 
a time scale of 25 ms or less are considered (as in the case 
of collective oscillations in the cortex), the time constants 
of spiking and signal transmission become important 
(Gerstner and van Hemmen 1992a; van Hemmen et al. 
1992; Gerstner et al. 1993). In these cases, a spiking model 
neuron should be preferred. 

It is, of course, a trivial statement that information is 
lost during averaging. With regard to the methods 
frequently applied in experimental and theoretical 
neurobiology, however, we felt a need to discuss the 
implications of this abstract statement. The above exam- 
ples are intended to give a deeper understanding of the 
problems with traditional techniques of data analysis and 
neural modelling. Mean firing rate, ensemble activity, 
and PSTH analysis all involve some kind of averaging 
and should therefore be applied only if care has been 
taken regarding the consequences. To phrase it succinctly: 
Beware of a priori averaging- you may miss the essentials. 
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