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Figure 1: 3 mobile micro-robots Alice in a labyrinth.
The robots and the sugar cube have the same sizel

Abstract:

Design of mobile micro-robot (MMR) is till a challenge due
to the restricted availability of basic components. However,
the number of highly integrated microelectronic and micro-
mechanical components is growing fast. Nevertheless, its
integration to a micro-system requires a good knowledge of
all the interactions between sensor, actuator, computation
and energy source. Often compromises between performance
and power consumption have to be found.

This paper gives the basic considerations for building mobile
micro-robots. The major scaling effects are presented and
their impact on micro-system design is discussed. The mobile
micro-robot Alice (fig. 1), having the size of a sugar cube, is
presented and discussed in the context of scaling laws. It has
an autonomy of around 10 hours and is able to navigate
based on simple behaviors like obstacle avoidance or wall
following.
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1 Introduction

With the progress in micro- and nano-technologies (MNT), a
large number of sensors and actuators operating in the sub-
millimeter range have appeared. Subsequently, various
research groups started recently to develop micro-robotic
systems for a wide range of application: precision tooling,
endoscopic surgery, biological cells manipulation, AFM
microscopy, etc. However, these devices are not redly
autonomous, neither concerning energy supply nor
intelligence. But autonomy is a major issue for a lot of
innovative application of micro-robots where teleoperation is
not possible or not desirable. Typical examples might be

found in medicine, where micro-robots could deliver a
medicament exactly were needed or in inspection and
exploration, where a much larger surface can be covered
when using a large quantity of micro-robots [Garcia97]. To
advance towards such very challenging applications, it is of
high importance to identify the key parameters that limit
downscaling [Nicoud95], [Shimoyama95]. Mechanical
miniaturization has already been investigated several decades
ago [Burckhardt72]. As most of the envisioned micro-robots
are still in the domain of classica physics, the classical
theory is still applicable to establish the basic scaling
properties of the domains in question. Scaling laws express
the dependence to a scale effect for physical parameters and
are usualy expressed in function of a reference length L.
Two procedures are possible: applying an isotropic
modification of the dimensions or holding some parameters
invariant with respect to the scale and study their influence
on the other parameters. The aim of this article is to discuss
and analyze the scaling laws and to verify some aspects on
an existing mobile micro-robot.

This paper is organized in two major sections. The first
section highlights different scaling aspects for MMR, trying
to be as general as possible. In the second section the micro-
robot Aliceis presented and discussed as a case study.

Within our current research activities we concentrate on
robots sizing between a couple of millimeter up to a couple
of centimeters. Throughout the text, we will use L as the
characteristic length of reference.

2 Laws of Scaling

Within this section we will discuss the most important
scaling effects related to mobile micro-robots. Of course the
scaling law approach has some limitations because just gives
the tendency of a physical dimension when scaling down.
Real and practical values (e.g. force of actuators, energy of a
battery) depend essentially on technological aspects. The
discussion is not exhaustive, however it should give a basic
understanding of the scaling effects and its consequences on
the design of mobile micro-robots.

2.1 Mechanics

The first where the similarity laws can be applied is the
mechanics of the robot. Mechanical properties are well
understood and scaling effects have been investigated and
verified for several decades[Drexler92].

The dimensions related to the volume (mass, inertia) are
proportional to L whereas dimensions related to the area
(cross section) scale down only with the exponent 2.



Moreover the structura stiffness and the stress related to the
mass scale linearly with L. This is a great advantage for
smaller systems which are intrinsically more robust against
destruction forces related to their own mass. In the design we
can thus choose thinner and less bulky structures or weaker
materials still conserving a good rigidity. An evident
example is found in nature if one compares the cross section
of the leg of an elephant with that of an ant. Additionally the
structural eigenfrequencies increase linearly with 1/L, thus
we can expect less interference with structural resonances.
Surface friction depends on the normal force, which is
proportional to the mass (L%). But the energy E, lost by
friction scales down more importantly assuming relative
displacements proportional to L. Thisis true for small motors
or gears, where one can use dider bearing instead roller
bearings. However, it holds only if we assume to keep the
rotational speed constant, which is not the case for many
components.
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Table 1: scaling of some mechanic quantities.

Air drag and lift depend on the area and thus are proportional
to L% This can be an advantage but also a disadvantage in
some cases. Due to this effect, a flying robot might fly much
dower, thus simplifying the control. However, secondary
fluid effect might play a dominant role for small systems. A
falling miniature robot has much better chance to survive
because of the increasing ratio between air drag and mass.
This effect is additionally supported by the mechanical
properties mentioned above. On the other hand a small land
robot is much more exposed to wind and friction with the
terrain could be insufficient for staying stationary (friction
~L® drag ~L?. These air drag effects become also very
evident in nature. A small animal, eg. an ant, can easily
survive a fall from a multi floor building, whereas an
elephant will be serioudly hurt when falling from around 1
meter.

2.2 Scaling effects on mobility

The size of a mobile robot has strong implications on the
mobility in a given environment. Wilcox [Wilcox97]
introduced the “mean free path” as the average distance a
robot can move before it encounters a non-traversable
obstacle. This distance depends on the size of the robot, the
maximal surmountable obstacle height and the terrain
morphology (rock distribution and size). For a given terrain
thereis arange of optimal dimensions. However, it should be
noticed that small robots can surmount higher obstacles in
relation to its size. This is due to the fact that the required
energy to get on an obstacle of its own height is proportional
to L* (Ep ~ h"m~ L " L% and thus decrease faster then the
mass (volume). Evident examples from the biology are again
small insects against big animals. Insects climb relatively
high obstacles in their daily live. Some of them e.g. fleas or
grasshoppers even prefer jumping. They jump over 20 cm,
which is many times their height whereas kangaroos jump up
to acouple of timestheir height.

Another aspect of mobility is the speed of movement.
Observations in nature and of autonomous mabile robots
show that the speed scales approximately linear with L.
There are of course large variations in velocity between
different species/robots of the same mass, but in average the
linear scaling law holds. As we will see later, this is related
to power, energy, control and also sensors of MMR.

2.3 Actuators

Actuators are one of the major problems in designing
miniature robots. The main reason is the lack of
commercialy available micromotors and the low
performance of the existing ones. For a good overview on
electrostatic and electromagnetic actuators please refer to
[Dario92] and [Fearing98].

Most actuators such as combustion engines, pneumatic,
electromagnetic, electrostatic, ultrasonic, shape memory



aloy, piezoelectric or biological muscle used for large
systems might also be useable in micro-robots. However,
some of them might be very difficult to build in small size
and thus are useless for our investigation. Others are very
interesting and promising but not yet well developed and
present important drawbacks (low speed, high voltage, low
forces, ...). One of the most promising and interesting
solutions in long term might be artificial muscles that show
excellent scalability in nature. However, they are still far
from real applications.

One of the actuators that are already available in small scale
are electromagnetic motors. For scaling of electromagnetic
motors we can find for the torque M [Jufer95]:

- M~ L® assumption constant efficiency

- M~L3% assuming similar motor temperatures.

In reality the scaling might lay somewhere in-between the
two assumption above. Although this scaling effect of the
motor torque is somewhat unfavorable, electrical motors still
represent one of the most interesting solutions because of

accumulators, supercaps, springs, fuel or solar cells. The
scaling properties and power density of the different energy
sources are presented in table 3.

Among the electrical energy storages, batteries have the
highest power density and an excellent availability in many
different sizes. Accumulators and supercaps have lower
energy density but are rechargeable, thus also compatible
with power generators (e.g. solar cells). The energy density
of supercapsis very limited, but, compared to accumulators,
they alow much higher currents for charging and
discharging.

Fuel has a very high energy density, but it might be a great
challenge to build small size combustion engines and
generators. The technology is not available today.

Finally, solar panels become interesting in small size because
of their advantageous downscaling effect. However, in most
cases they have to be combined with accumulators or
supercaps.

their availability (see table 2) and ease of control. Energy <alin energy energy
Source 9 [Wh] [WhK]
M otor torque | power | speed | volume | eff. Battery L® 230 - 1300 51 - 408
Type | [mNm] | [mW] | [rpm] | [mm’] | [%] Accu K 40 - 210 11-61
Srnooyy 3 20 12| 120 110 6 Supercap ~ |g4 1.8 (@9cmd) 1.6 (@9cmd)
gear 1:125 Spring L 0.07
Minimotor Fuel L3 13000 13000
1.9 mm 0.15 3 425 27 | 8.25 Solar panel K 0 - 100 W/m?
gear 1:47 Table 3: Energy sources.
Wobble 0.35 26| 185| 195| 47 _ o .
from SSSA The scaling properties given in table 3 are derived form real
ETA lavet examples and some simplified models not considering the
0.35 1.3 60 210 | 6.3
by Swatch housing. Consequently the given values might be somewhat
Table 2: Examples of small motors (tested in a limited optimistic. However, taking into account current technology
temperature range). and availability, the most promising power sources for MMR

For an autonomous robot a motor with a good energetic
efficiency should be preferred, but as torque scales with L>,
the mechanical power quickly becomes smaller for
decreasing L. In practice the volume of the coil become
predominant over the magnet, increasing significantly the
overall size. On the contrary, the motor designers are mainly
interested in a good power to mass ratio, and normally prefer
a much lower efficiency and a higher working temperature.
This is allowed because the surface to volume ratio (L%/L3 =
L™) responsible for heat dissipation is scaling favorably.
Assuming constant surface speed on the rotor, the rotational
speed Q of a motor scales with 1/L. Thus small motors
require gearboxes with high reduction rates which
additionally reduce the efficiency.

2.4 Energy source

Mobile micro-robots (MMR) require an on-board energy
source or the capability to generate energy from an external
source. The most obvious energy sources are batteries,

are ill batteries or the combination of solar cells and
accumulators.

2.5 Sensors

As we are interested in autonomous mobile robots, sensors
for environment perception are of high importance (table 4).
In relation with scaling, the power consumption of sensors
might become the major issue. Generally, we can distinguish
between passive and active sensors. Passive sensors do not
irradiate energy in to the environment (eg. camera,
microphone) whereas active sensors send out some sort of
signals that support the measurement.

In consequence, the power consumption of passive sensorsis
dominated by the signal conversion and processing, which is
barely changing with the robot size. In contrast, active
distance sensors like sonar, IR proximity sensors,
triangulation (Position Sensitive Device), light stripe, laser
range finder, magnetic or radar emit energy and use the
reflected beams dispersed by the object to measure. We
might assume that the required measurement distance is



proportional to the characteristic length L, which makes
sense if the robot speed scales linearly. Under this
assumption, the emission power depends on L? (surface of
the sphere where the reflection is dispersed) multiplied by an
exponential factor function of L (€ representing the energy
dissipation). However, even if L* ‘€ is favorable for small
size, active sensors might have power a consumption that is
not feasible for MMR. Thus passive sensors or very simple
active sensors are the right choice for small systems.

sensor principle output comment
Bumpers contact on-off easy
Compass magnetic angle feasible
Inclinometer inertia angle feasible
Barometer pressure bar feasible
Temperature heat °C easy
Microphone sound Hz feasible
Photodiode light LUX feasible
light, not easy
Camera position & val lijseﬁ)er and much
color P information
Sonar time of roximit not for short
flight b y range
Infrared rengztted proximity feasible
reflected , to be
PSD angle distance integrated
. time of , i
Laser ranging flight distance difficult

Table 4: Possible sensors for MMR.

2.6 Control, Processing

The controller of a robot has to process information and
generate adeguate actions. This task might not change much
with the size of the robot. However, we might argue, that
smaller system have a more restricted, thus less complex
environment to deal with. This might allow a group of small
robots to fulfill a task with lower computational power per
robot. Additionally, small robots are moving slower, thus
requiring less demanding sampling times for reaction.
However, these effects will in most cases not compensate for
the important reduction of calculation power with size.

As we have seen above, the available energy of a MMR
scales with L3, The required power Pcpy of a microprocessor
isrelated to the number of transistors n, the clock frequency f
and the power supply V.

Pepy ~NLF Vg

If we assume f ~ velocity ~ L, the power consumption scales
linear with L. However, because the available power is
scaling with L3 we still have to admit a reduction in
caculation power by L? thus drastically limiting control
capacity. It is therefore a must and not a choice to further

reduce the calculation power by using 8-bit instead of 16 or
32-bit microcontrollers.

In consequence, we have to admit that the intelligence of
MMR will be limited. Nevertheless, in connection with an
external supervisor (computer, human) or an adequate
collective approach, small robots might still be able to fulfill
complex tasks.

2.7 Communication

Communication in MMR takes place between different units
or between the robot and the supervisor or user. The
communication can be unidirectional or bidirectional,
involving areceiver, atransmitter or both on the robot.

The power consumption and the dimension of
communication devices often depend less on the
communication distance but more on the precision, the
conversion technique and the communication speed.
Receivers have relatively low power consumption but as they
are almost always operating, it becomes an important power
drain for MMRs.

Transmitters irradiate power like an active sensor. Thus the
power consumption depends on L? ‘€, where L is the
communication distance that we assume again proportional
to the size of the MMR.

Communication can be established through infrared, visual
signaling, sound or radio. For short range, infrared becomes
interesting because of the favorable L? ‘€ scaling and it is
much simpler than radio. Moreover, clever combinations of
different concepts for the sender and the receiver might
reduce power consumption. For example the robot could
receive infrared signals and answer with a particular
movement or it could use its IR distance sensor aso for
communication. In any case, communication is quite power
consuming for a MMR and thus should be reduced to a
minimum. This favors solutions where the robot operates
autonomously using its on-board capabilities only.

3. The mobile micro-robot Alice

The mobile micro-robot Alice (fig. 2) is presented here as a

case study to demonstrate and verify the scaling law

discussed above. It is an excellent example of a miniaturized

and highly integrated mechatronic product. Other research

laboratories around the world have also developed similar

MMR, among them:

- Artificial Intelligence Lab at MIT [McLurkin96]

- Microprocessor and Interface Lab at EPFL [LAMI]

- Department of Micro System Engineering at Nagoya
University [Fukuda99]

- Institute for Complex Engineered Systems at CMU
[Navarro99]

- Sandia National Laboratories in Albuquerque NM
[Sandia01]



Figure 2: The newest version of the mobile micro-robot
Alice with its motor and sensor module assembled into
the plastic chassis.

Alice is one of the smallest intelligent mobile robots in the
world (table 5-7). The remarkable long power autonomy of
about 10 hours makes it very particular and unique in its
class. Simplicity, modularity, hardware and software
flexibility, robustness and affordable price are further
advantages. Maybe these features and the accumulated
experience were decisive for the victory at the Micro Maze
Contest (editions ‘98 and ‘99) in Nagoya, Japan.

In agreement with the conclusions drawn from the section on
mechanical scaling, Alice can fall down from 1 meter
without serious damage and can fall down twice its own
height without any problem (~5cm).

Dimensions 21x21x12mm
Weight 5g.

Velocity 40 mm/s

Power consumption 4mw - 10 mwW
System autonomy up to 10 hours
Infrared remote communication | 6 m, 500 bps
Infrared local communication 4 cm, 500 bps
Radio communication 10 m, 1000 bps

Table 5: General characteristic of Alice.

In contrast to big robots, the supporting structure is made of
plastic and printed circuit board. The materia cost is only of
about $ 50, whereas the assembling time for the prototypesis
still approximately 3 hours. An automated assembly is
feasible for high quantity production.

Table 5 gives the main characteristics of the robot. Alice
reaches a maximum velocity of 40 mm/s (twice the length)
that demonstrates the scaling linear with L. Bigger robots of
about 1 cubic meter run about at 1-3 m/s.

The power consumption of the motors of 3 mW is about 30%
of the total power consumption and thus still very important
part (table 7). Moreover it should be noticed that the motors,

being probably the most critical component, mainly give the
size of Alice.

Mechanical structure
Motors

Motion

Energy source

plastic frame and PCB

2 Swatch motors

2 wheels on the minute axis

3 button batteries (1.5V, 23mAh)
+ voltage regulator

CPU PIC16F84 @ 4 MHz

Sensors 4 infrared proximity sensors

Communication 1 Local with the same 4 proximity
Sensors

Communication 2 One way IR with dedicated circuit
(1 diode + 2 OpAmps)

Communication 3 One way IR with RC5 standard

Communication 4 Both ways radio. On-off keying

Table 6: principal parts of Alice.

As argued in section 2.4, also for Alice, chemical batteries
are the best power source. Because of the limited power of
these button batteries, a voltage regulator was used to ensure
a stable supply voltage.

Active proximity sensors are used for environment
perception. They are very simple to use and have a limited
range of 2 to 3 cm (similar to L). To minimize power
consumption, measurements are taken only every 50 ms.
Thisis till enough for reliable obstacle avoidance at Alice's
top speed. In this particular case we see again how energy,
sensors, control and mobility are closely connected and a
compromise was found.

unit average[mW] | peak [mMW]

motors (1x) 15 25
CPU 3

Sensors 0.5 18
infrared rx 0.6 1
local communication 18
radio rx 3 3
radio tx 30
The robot ~10 ~ 45

Table 7: power consumption of each subsystem.

Another main power drain is the microprocessor, also using

30% of the total power. The program is written in

Assembler, allowing optimizing the code and reducing

memory space to a minimum. Behaviors like obstacle

avoidance or wall following are implemented on the
microcontroller.

Finally different ways of communications are available:

- unidirectional IR communication for teleoperation based
on the behaviors like obstacle avoidance or wall
following

- bidirectional IR communication with distance sensors for
robot to robot short range communication



- bidirectional radio  communication used for
communication with an externa supervisor. This alows
for automatic map building in simple labyrinths

3.1 Applications of Alice

The robot Alice is aready used in various research and

educational projects[Caprari00]:

- localization and map building

- local and global planning methods with hybrid (metric-
topological) environment models

- semi-autonomous operation via Internet [Siegwart98] or
Matlab

- robot soccer

- research platform for biologists

- ludic applications

Furthermore, Alice is an ingpiration for other mobile robots

and autonomous systems in general. For the first prototype of

a micro-robot for space exploration (fig. 3) we basicaly

connected 2 Alice, attached bigger wheels and used the same

IR receiver module to perform the first experiments

[Freese99]. The result was a fascinating robot for rough

terrain with on-board inspection camera and autonomy of

over one day.

Figure 3: LAMAlice: The off-road sister of Alice. It is
composed by a front and rear module connected with a
flexible metal blade. The four actuated wheels are also
made of radial blades.

The reduced size of Alice, together with the long power
autonomy make it a privileged candidate for investigations
and experiments in collective robotics. For this kind of
research the main interest is the collective behavior of a
group of interacting units and the algorithms governing
them. The key elements are local communication among
teammates, reaction to the environment sensed locally and
stochastic decisions. Many concepts for the design of such
robot control are derived from the biology and the ethology,
manly from the study of social insects like the ants
[Bonabeau99]. The robots serve also to confirm those
theories by mean of experiments with robots programmed to

act as modeled insects. Further proceeding in this direction
and given that the size of MMR is reaching the size of real
insect (fig. 4), a new opportunity is open. It is now possible
to let interact living creatures and robots in a mixed society
and thus to analyze and study the behavior and even the
methods to control it.

Figure 4: The size of Aliceis similar to an ant.
Photo by Guy Theraulaz/ CNRS- UPS- LECA Toulouse.

4. Conclusion

In this paper we have presented and discussed the scaling
and limitations of mobile micro-robots (MMR). The study of
the scaling effect enables a deeper understanding of the
individual components and their interactions. This
knowledge turned out to be very crucial for building small
robots. However, the lack of small high performance motors,
sensors and power sources makes the design of MMR still a
big challenge. Additional research and development in micro
systems technology is required to further push this
fascinating field in robots.
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