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A Tandem of SH3-like Domains Participates in RNA
Binding in KIN17, a Human Protein Activated in
Response to Genotoxics
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The human KIN17 protein is an essential nuclear protein conserved from
yeast to human and expressed ubiquitously in mammals. Suppression of
Rts2, the yeast equivalent of gene KIN17, renders the cells unviable, and
silencing the human KIN17 gene slows cell growth dramatically. Moreover,
the human gene KIN17 is up-regulated following exposure to ionizing
radiations and UV light, depending on the integrity of the human global
genome repair machinery. Its ectopic over-expression blocks S-phase
progression by inhibiting DNA synthesis. The C-terminal region of
human KIN17 is crucial for this anti-proliferation effect. Its high-resolution
structure, presented here, reveals a tandem of SH3-like subdomains. This
domain binds to ribonucleotide homopolymers with the same preferences
as the whole protein. Analysis of its structure complexed with tungstate
shows structural variability within the domain. The interaction with
tungstate is mediated by several lysine residues located within a positively
charged groove at the interface between the two subdomains. This groove
could be the site of interaction with RNA, since mutagenesis of two of these
highly conserved lysine residue weakens RNA binding.
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Introduction

Cells are continuously submitted to attack, either
from reactive oxygen species resulting from the
normal cellular metabolism or by exogenous agents
such as radiation and chemicals. Consequent DNA
damage triggers specific signalling to activate the
repair machinery. The human gene KIN17, located in
chromosome 10, participates in the general response
to genotoxics. It is up-regulated following DNA da-
mage produced by UV-C or by ionizing radiation, '
and this response to UV light is strictly dependent on
the presence of the functional nucleotide excision
repair proteins XPA and XPC.>? The ectopic over-

Abbreviation used: GST, glutathione-S-transferase.
E-mail address of the corresponding author:
sophie.zinn@cea.fr

expression of gene KIN17 modifies the nuclear
morphology and inhibits S-phase progression, thus
blocking cell growth.*?

KIN17 encodes for a nuclear protein conserved from
yeast to human. Its ubiquitous expression suggests its
participation in a regulatory mechanism common to
all cell types. Suppression of Rts2, the yeast KIN17
homolog, renders the cells unviable,® and silencing
the human gene KINI17 impedes cell growth
dramatically.” KIN17 is part of high molecular mass
complexes that mediate different types of nucleic acid
transactions.®” The mammalian KIN17 protein binds
to curved DNA found at hot-spots of illegitimate
recombination in eukaryotic chromosomes,'"?
and partially complements the bacterial transcriptional
regulator in Escherichia coli called H-NS."> Moreover,
proteomic analysis detected protein KIN17 in several
complexes of the human spliceosome, a large RNA—
protein assembly consisting of small ribonucleoprotein
particles (snRNP) and associated non-small ribo-
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nucleoproteins.'*" Interaction between KIN17 and
RNA was further characterized by Pinon-Lataillade et
al.,'® showing that the mouse KIN17 protein interacts
with RNA in vivo and that human and mouse KIN17
proteins are able to directly bind different types of
RNA homopolymers in vitro.

Human KIN17 (hKIN17) is a 45 kDa modular
protein composed of a 30 kDa N-terminal region
conserved in all species, and a 15 kDa tail found only
in higher eukaryotes. The N-terminal region exhibits
a CyH, zinc finger motif, which is generally
associated with nucleic acid binding function. This
domain modulates the interaction between KIN17
and double-stranded DNA as its deletion leads to a
reduced DNA binding."" In contrast, the C-terminal
tail does not affect the DNA binding of KIN17."" Tt is
involved in the anti-proliferative effect of KIN17.
Indeed, cell growth is not affected by over-expres-
sion of KIN17 protein lacking the C-terminal tail,
whereas it is inhibited by over-expression of the
whole protein.”

The C-terminal domain of hKIN17 comprises a 27
residue KOW motif,'” shared among three families
of ribosomal proteins (microbial L24 and eukaryotic
eL26 and el.27), the essential bacterial transcription-
al elongation factor NusG, the eukaryotic chromatin
elongation factor Spt5p, the T54 proteins and the
higher eukaryotic KIN17 proteins.'® In the three-
dimensional structures of the ribosomal proteins'®
and the transcription factor NusG,* the KOW motif
occurs in the first two strands and adjacent loops of
a larger src homology 3 (SHj)-like domain. 124
protein interacts with several RN As in the ribosome,
which is in agreement with the original proposal
that KOW is an RNA-binding motif."”

Here, we report the high-resolution X-ray struc-
ture of the C-terminal domain of hKIN17 and show
that this domain contributes to the RNA-binding
properties of the whole protein. We also present a
structure of this domain complexed to tungstate that
allowed us to identify two highly conserved lysine
residues involved in binding to this ion analogous to
phosphate, as well as in RNA binding.

Results

The C-terminal region of hKIN17 exhibits an all-$
structure consisting of two tightly packed
SH3-like subdomains

The boundaries of the C-terminal domain of
hKIN17 protein (amino acid residues 268-393)
were delineated on the basis of residue conservation
from sequence alignment of all known KIN17
proteins (Figure 1(a)) and on the basis of hydropho-
bic amino acid cluster analysis® of the hKIN17
sequence. This domain forms an independently
folded unit, as it can be expressed as a soluble and
folded protein in solution.

The structure of the isolated C-terminal domain
of hKIN17 was determined by means of single

isomorphous replacement with anomalous scatter-
ing (SIRAS) phasing using data collected on
crystals soaked with iodine as described.”” The
structural model, including 211 water molecules,
was refined to a resolution of 1.45 A, leading to
final R and Rgee values of 13.7% and 17.5%,
respectively (Table 1). The geometry can be
considered as very good, with 94.2% of the
residues in the most preferred ¢/ conformations
and only one residue in a disallowed region of the
Ramachandran plot. All residues in the X-ray
crystal structure are well ordered, except for the
first seven residues, (the non-wild-type glycine
introduced by the cloning vector and the first six
residues) for which there is no electron density,
and for which a signal corresponding to random
coil is seen in NMR experiments (data not shown).
This domain is roughly ellipsoidal, with dimen-
sions of 40 Ax30 Ax25 A and organized into two
major subdomains (Figure 1(b)). Subdomain A
(spanning residues 284-334 of the hKIN17 se-
quence) and subdomain B (spanning residues 340-
391 of the hKIN17 sequence) both adopt a similar
five-stranded PB-barrel-like fold and are connected
to each other by a short linker of five residues. In
each subdomain, the first and smaller p-sheet is
formed from strands R-1aer B), pPart of P-2awr B)
and B-54(r ), and the second and larger B-sheet is
formed from the remainder of B-2a¢r By, B-3Acor B)
and R-4a.r B The two p-sheets pack against each
other at approximately right-angles because of the
helical turn between P-45r B and P-5acr B
Interestingly, the N-terminal segment 276-283 and
the C-terminal fragment 391-393 form the interface
between the two subdomains. They interact with
both subdomains and the C-terminal fragment
interacts with the linker region (Figure 1(b)). The
surface area of each subdomain buried in the
interface of the tandem structure is approximately
1150 A% This is a relatively large protein-protein
interface with a classical percentage of non-polar
residues (58 %).”

The overall backbone structure of the two
subdomains superimposes well, with an rmsd of
1.16 A on 29 Ca atoms, excluding the three variable
loops, despite a low level of sequence identity (9%
identity; 54% sequence similarity) (Figure 2). A
DALI search using the individual A and B
subdomain structures shows that these subdomains
display structural analogy with known protein
domains adopting an SHj-like fold. Domain III of
NusG (PDB code 1M1G) is the best DALI match for
both subdomains, and shows 17% and 20% identity
with subdomains A and B, respectively. A high
DALI score (>6) is obtained also for the dihydro-
folate reductase (PDB code 1vie), the Tudor domain
of SMN protein (PDB code 1gv5), the SH; domain
of the protein kinase p56lck (PDB code 1lck-A) and
the ribosomal protein L2le (PDB code 1ffk-N).
Thus, the C-terminal domain of hKIN17 has
structural similarity with various SH3-like
domains, even if it lacks similarities in either
primary sequence or charge distribution.
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(a) 270 2|30 2I90 3'|00 3I10 320 330

1.Homo sapiens EEEKKRTARTDYWLQPEIIVKIITKKLGEK-YHKKKAIVKEV--IDKYTAVVKMID----SGDKLKLDQTHLET
2Gallus gallus EEERKKRTSRTDYWLQPEIIVKIVTKKLGEK-YHKKKAVVKEV--IDKYTAVVKMID--~--SGDKLEKLDQTHLET
3.Mus musculus EEEKKRTARTDAWLQPGIVVKIITKKLGEK-YHKKKGVVKEV--IDRY TAVVKMTD-—---SGDRLKLDQTHLET
4.0ryza sativa EKAKERSNRKDYWLCPGIVVKVMSKSLAEKGYCKQKGVVKRV--IDKYVGEIEMLE----SKHVLRVDODELET
5. Arahidopsia thaliana = = = ----- RMNRKDYWLFEGI IVKVMSKALAEKGY YKQKGVVKKV- - IDNYVGEIKMLD - - -~ SKHVLRVDQKELET
6.Drosophila pseudoobscura EAKKERANRKDYWLHKNIVVKEFISKSMGDK-FFKQKAVVQEL--VDKYQAKIKFLD----TGEKLKVDQAHLET
7.Drosophila melanogaster ESKKERANRKDYWLHKGIVVKEISKSMGEK-FFKOKAVVLDV--IDRYQGKIKFLE----TGEKLKVDQAHLET
8.Danio rerio EEQKKKSVRSDNWI-ENIVVKVVTKKLGEK-YYKKKAIIREL--QGKYTAVVKMVD----SGDKLKLDQSHVET
9.Anopheles gambiae EQKKEKNNRKDYWLAEGIVVKLISRSLGEK-YYKEKGVVVEV--IEKYRAKIKLLE----TGEKLKVDQAHLET
i0.Xenopus laevis EEQKKKTERTDYWLQPDIVVKIVTKRLGEK-YYKKKAVVKEV--IDRYTAIVKLVD----SGDKLKLDQSHLET
11.Xenopus tropicalis EEKKKKTERTDFWLQPEIVVKIVTKKLGEK-YYKKKAVVKEV--IDRYTAVVKLVD----SGDKLKLDQTHLET
12.Strongylocentrotus purpuratus RKKSKLTEKKDYWLRKGIIVKITTKRLGEK-CLKKKGVVKDV--IDRYTGVVKLND--—-TCTKVKVDQVHLET
i3 Pan troglodytes EEEKKRTARTDYWLQPEIIVKIITKKLGEK-YHKNKAI--EV--IDKYTAVVKMID----SGDKLKLDQTHLET
14.Caenorhabditis briggsae ERKKERKNRKD YWMREGIVVKVVTKSLGSQ-YYKSKGVVKKM--IDDYTAQVKLDD----G-TVVKLDQEHVET
15.Canis familiaris EEEKKRTARIDHWL-PEIIVKIITKKLGEK-YHKKKGVVKEV--IDKYTAVVKMID----SGDKLKLDQTHLET
16.Caenorhabditis elegans ERKKERKNRKDYWMREGIVVKVITKSLGSE-YYKAKGVVRKV--VDDYTAQVKL-D----DGTVVKLDQEHVET
i7.Plasmedium falciparum = = = -----] EENDNNIWIFKNIIVKIIDKTHK---YYNHKGVIKYISRKDKYKCEIKLNN----STDIVYAYQKQLET
18.Plasmodium barg:.lai RKKDKNSEDYDIWITKNIIVKIVDKNHK---YYKSKGAIISISSTEKNKCEIKIKN----TNKYTLAYQSQIQT
19.Dictyostelium discoideum EEKP--WIIKDIVIKIIDKELANGKYFKQKGYIVSV--ENEFLAKVKLLD----SGDILKIDQTFLET
20.Apis mellifera SKLNNDNDNMEGWLREGLMVKVITKTLGDK-YYKSKGIIQSV-ENSNFIGKVKLRSPEEVENHVIKIDQEYLET
21.Theileria annulata DEKANKNGTTQETWLCNDILVKIILKTHE---MYKQKFKVVKV---SNNTATLDTGN----GT--LOIQDKYLET
22 Plasmodium yoelii yoelii —-KDEKSEDYDTWITKNIIVKIVDKNHK- -TTKYTLAYQNQIQT

23 Plasmodium chabaudi chabaudi KKKDKNNEDYDIWITKNIMVKIVDENHK---YYKSKGVIISISSSEKNKCEIKIKN----TSTYTSAYQKQLOT
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1.Homo sapiens VIPAP - GKRILVLNGGYRGNEGTLESIN-EKTFSATIVIETGPLKGRR-VEGIQYEDISKLA
2.Gallus gallus VIPAP - GKKVMVLNGGYRGNEGILESIN-EKKFSATIIIDSGPLKGRR-VEGIQYEDISKLA
3.Mus musculus VIPAP - GKRVLVLNGGYRGNEGTLESIN-EKAFSATIVIETGPLKGRR-VEGIQYEDISKLA
4.0ryza sativa VIPQI - GGLVRIVNGAYRGSNARLLSVD-TERFCAKVQVEKGLYDGKV-LKAIEYEDICKI-
5.Mabid.ops:i.5 thaliana VLPQI - GGMVKIVNGAYRGSNARLLGVD-TEKFCAKVQIEKGVYDGRV-IKSIEYEDICKLA
6.Drosophila pseudoobscura VIPAM - GKTVLVVNGAYRGSEALLKKLD-ERKFSVSIEILHGPLKGRI-VDNVQYEDISKL~-
7.Drosophila melanogaster VIPAL -DKPVMVVNGAYRGSEALLRKLD-ERRYSVSVEILHGPLKGRI-VDNVQYEDISKL-
8.Danio rerio VIPAP - GKRVLILNGQYRGTEAILEGIN-EHKFSATLTLDSGRMKGKT-VEGIAYEDFSKLA
9.Anopheles gambiae VIPAV - GKQILVLNGGYRGCTAVLKAIN-TERYSVTIEIASGPLKGRL-VSNVAYEDISKL-
10.Xenopus laevis IIPAP - GKRVLVLNGGYKGHFGILDGII-EKRFSATIEIDSGPLKGRK-VEGIPYEDISKVA
11.Xenopus tropicalis VIPAP - GKRVEVLNGGYKGHFGILDCIN-EKSFSATIEIDSGPLKGRK-VEGIPYEDISKVA
12.8trongylocentrotus purpuratus VIPNI -CKPICIVNGDYRGVTCTLHSLD-EKNFSVTVKSDSCKL--— -~ VEGQAYEDVCKYS
i3.Pan trogledytes VIPAP* GKRILVLNGGYRGNEGTLESIN-EKTFSATIVIETGPLKGRR-VEGIQYEDISKLA
14.Caenorhabditis briggsae VIPSI - GRTMLVVNGAYRGQEATLESID-EKHFSLRLKIASGPTRGRQ-ID-VPYEDASKMA
15.Canis familiaris VIPAP - GKRILVLNGGYRGNEGTLESIN-EKTFSATIIIETVRNA----KRLISTEDI-—--
16.Caenorhabditis elegans VIPSL - GROQMMIVNGAYRGQEATLESID-EKRFSLRLKIASGPTRGR--QIDVPYEDASKLA
17.Plasmeodium falciparum VIPNI - GRKVVVLKGKYKGSCAVIKKVL-PDEDLVVVNIYNKSLDKFISEERMSYDDVSKL-
18.Plasmodium berghei VIPQI -GRMVLILKGNYKCGLKGKIKKVFISEEDYAVVSVLHKNSDEIIAEEHMIFDDISKE -
19.Dictyostelium discoideum VIPQI -GSTVIIVNGKYRGKEATIKNVN-FDDENAKLYIKDNDI TITLPYESFSK--
20.Apis mellifera VIPAI -GKEVIILWGKYKAMKGIVHKLH-IEHYSIDVKLESD--==========—=—————-
21.Theileria annulata VLPSV - NGRVKVLSGRNRGLVGTLISAD-PDNLKVKVSVQGN-—-———-~ LMELTYDDISQY-
22.Plasmedium yoelii yoelii VIPQI -GRMVLILKGRYKGLKGKIKKIS~-EDEDYAVVSVLHKNSDEIIAEKGMPFDDI -~~~
23.Plasmodium chabaudi chabaudi VIPQI -GRTVLILKGRYKGSKGKIKKIS-EDEDYAVVSVAH--———————= KSSGKILLK--

% =ELLRKRVLFFIMFIQCSTFCCNKLEEKWRYFFTLIFIFFSII

(b) N-ter

Subdomain A

Subdomain B

Figure 1 (legend on opposite page)
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Table 1. Phasing and refinement statistics

A. Phasing
FoM (acentric/ centric) 0.4961/0.3944
Phasing power iso (acentric/centric) 1.980/1.573
Phasing power anomalous 1.250
B. Refinement
Space group P2,2,2,
Resolution range (A) 32.62-1.45
Reflections used in refinement 22,249
R (%) 13.7
Reree (%) 175
Total number of atoms 1181
Number of
Protein atoms 954
Iodine atoms 12
Water molecules 211
Average B-factor (A%) 15.3
rm.s.d from ideality
Bond lengths (A) 0.013
Bond angles (deg.) 1.519
Chirality (deg.) 0.091
Ramachandran plot
Most-favoured regions (%) 94.2
Additionally allowed regions (%) 4.8
Generously allowed regions (%) 0
Disallowed regions (%) 17

# K311 in loop p2aP3a is located in a disallowed region of the
Ramachandran plot; however, its backbone conformation was
well supported by the electron density.

The C-terminal domain of hKIN17 binds RNA
in vitro

Since hKIN17 protein is able to recognize RNA
homopolymers and can bind RNA in vivo,'® we
investigated which region(s) of the protein interact(s)
with RNA. Three constructs containing either the N-
terminal globular region 1-160 (shown to be folded
by NMR analysis; data not shown), the same region
without the zinc finger 68-160 (shown to be folded
by NMR analysis),** or the C-terminal domain 268
393 described here were tested for their ability to
bind RNA using the same **P-labelled RNA probe as
that used to characterize the RNA interaction
properties of the full-length hKIN17.'® The North-
western analysis showed that the N-terminal do-
main comprising the zinc finger interacts efficiently
with RNA in vitro, and that the deletion of the zinc
finger from this domain drastically reduces RNA
binding (Figure 3). The C-terminal domain showed
an intermediate RNA-binding activity. In compari-
son, a South-western analysis showed that only the

N-terminal domain binds significantly to a double-
stranded DNA known to interact with the whole
hKIN17 protein (data not shown).

To characterize further the RNA-binding proper-
ties of the C-terminal domain, we carried out
binding assays with ribonucleotide homopolymers
immobilized on agarose beads. This kind of assay
has been useful in assessing RNA binding for many
other RNA-binding proteins and domains.”*” The
C-terminal domain of hKIN17 fused to glutathione-
S-transferase (GST) binds to all four RNA homo-
polymers at 100 mM NaCl, with a clear preference
for poly(rG) and poly(rU) (Figure 4(a)). The possi-
bility of GST interference was eliminated by
repeating the test with GST alone, since no signal
was detected using a specific anti-GST antibody. The
cleaved protein was also assayed for RNA binding
with results comparable to those obtained with the
GST-hKIN17 C-terminal domain fusion (Figure
4(a)). To rule out the possibility of non-specific
binding due to electrostatic interactions, the assay
was repeated at increasing ionic strength varying
from 0.1 M to 1 M NaCl, showing that binding of the
C-terminal domain of hKIN17 to poly(rG) and poly
(rU) is still significant in concentrations of NaCl up
to 0.25 M (Figure 4(b)). Such resistance of the C-
terminal domain-poly(rG) or poly(rU) interaction to
significant ionic strength suggested that, in addition
to ionic contacts, hydrophobic interactions are
involved in the RNA-protein interaction. The
protein also retains its RNA-binding capacity in
the presence of either 1 mg/ml of E. coli tRNA or
1 mg/ml of heparin (Figure 4(b)). Finally, the
heparin-resistant binding,?®?° and the tRNA-resis-
tant binding, demonstrate the stringency and
specificity of the binding of the C-terminal domain
of hKIN17 to RNA. A North-western assay confirms
the interaction of the C-terminal domain of hKIN17
with poly(rG) and poly(rU) (Supplementary Data).
On the basis of these experiments, we conclude that
the C-terminal domain of hKIN17 is an RNA-
binding domain in vitro.

Tungstate-binding sites reveal important
determinants for the binding of RNA

The binding of a protein to RNA is often
mediated by interaction with the phosphate
backbone of the nucleic acids, and positively
charged amino acids are generally found in
contact with the phosphate groups® In order to

Figure 1. Sequence and structure of the hKIN17 C-terminal domain. (a) Multiple sequence alignment of the C-
terminal region of 23 eukaryotic KIN17 proteins. The numbering scheme refers to the sequence of human KIN17.
Positively charged residues are in blue, negatively charged residues are in red and hydrophobic residues are in green. The
secondary structure elements corresponding to the hKIN17 C-terminal crystal structure are indicated above the
alignment. The length of the hKIN17 C-terminal domain is well conserved, except in the Chimpanzee (Pan troglodytes)
sequence, which harbours a 42 residue insertion between the two subdomains. (b) A ribbon representation of the 3D
structure of the hKIN17 C-terminal domain. It consists of two SH3-like subdomains; the first one (A) is in green and the
second one (B) is in blue. The short linker between the two subdomains is in grey (segment 335-339) and the two segments
involved in the interface between the subdomains are in orange (N-terminal segment 274-283) and in violet (C-terminal
segment 391-393).
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(a)

loop 3

(b) B1a/p1e/pi6

p2a/p2s/p17

loop 2

B3ab3e/p18 R4a/B4RIB19  PSa/PSER20

hKIN17 280WLQPEIIVKIITKKLGEKYHKKKAIVKEVIDK-YTAVVKMIDS - --GDKLK LDQTHLETVI 336

hKIN17 337HAPGKRILVLNGG— - —YRGNEGTLESINEKTF'SAT IVIETGPLKGRRVEGIQYEDISKLA 393

NusG 1ss EEKGDQVRVIEGP-- -~ FMNETCTVEEVHPEKRKLTVMISI-FGRMTPVE LDFDQVEKI 249

KOW motif

Figure 2. Structural analogues of the two SHs-like subdomains. (a) Superposition of the two subdomains of hKIN17
C-terminal domain (colours as in Figure 1) and the domain III of aseNusG (PDB code 1M1G; yellow). The rmsd
calculated between the backbones of the two subdomains except for the three variable loops reaches 1.16 A (on 29 C%).
The rmsd calculated between the backbones of subdomain B of hKIN17 C-terminal domain and its closest DALI match,
the domain IIT of aaeNusG except for the three variable loops reaches 1.20 A (on 29 C%). The sequences presenting the
KOW motif form the first two p-strands and their adjacent loops (in red for NusG and in pink for KIN17). (b) Sequence
alignment of the two subdomains of hKIN17 C-terminal domain with the domain III of azeNusG. A B-bulge occurs in
the second subdomain causing the insertion of residue G383. Longer p strands (p18 and p19) for the domain III of
aaeNusG are drawn in grey. The KOW motifs of the second subdomain of hKIN17 C-terminal domain and the domain

IIT of aaeNusG are boxed.

identify the positively charged residues of hKIN17
involved in RNA interaction, we screened the
surface of the C-terminal domain usmg tungstate,
which can mimic phosphate groups,” and has been
useful for identifying phosghate binding sites in
other crystal structures*° As tungsten is subs-
tantially heavier than phosphorus, has more
electrons and can give rise to a strong anomalous
signal, tungstate ions can be identified easily by
X-ray diffraction methods. We collected data at
the W Ly absorption edge from a crystal soaked
in Na,WO, solution and a crystal obtained by
co-crystallizing with Na,WO, to a resolution of
1.91 A and 2.30 A, respectively. Both derivative
structures revealed important features of the
binding of tungstate anions to hKIN17 C-termi-
nal domain.

The initial 2F,—F. and F,—F. electron density
maps obtained from soaked crystals showed a
large patch of electron density, defining a cluster
of tungsten atoms, confirmed by the anomalous
signal. Twelve strong peaks (>10 o for the
anomalous difference) characterise the entire
cluster but only six of these have a refined

occupancy greater than 0.1. The tungstate anions
are all located around the cationic NH3 side-chain
groups of K302 in p2 of subdomain A, of K341 in
i1 of subdomain B and of K391 at the C terminus
of p5 in subdomain B of hKIN17 C-terminal
domain (Figure 5(a)). A larger cluster of 12
tungstate anions, at almost the same location as
in the soaked crystals, is found for the co-crystal
(Figure 5(b)). The interaction is characterised by
two additional lysine residues (K377" and K297’)
from molecules related by crystal symmetry and
another minor site where one tungsten ion is
nestled between the side-chains of R273 and of
K317" from a symmetry-related molecule.

Derivative structures reveal structural variability
within the C-terminal domain

The structure of the soaked crystal is isomorphous
with that of the native domain. On the other hand,
the co-crystal of the C-terminal domain of hKIN17
with Na,WO, changes its cell parameters from
a=45.75 A and b=46.31 A in the native crystal to
a=47.67 A and b=48.72 A, with concomitant
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Figure 3. RNA-binding activity of deletions of the hKIN17 protein. (a) A representation of the full-length and
deleted hKIN17 proteins. The deleted protein (1) corresponds to the N-terminal tail of hKIN17 and the deleted
protein (3) corresponds to the same region without the zinc finger. The deleted protein (2) corresponds to the C-
terminal domain of hKIN17. Residues from 150 to 270 of the hKIN17 sequence correspond to a flexible region,
without any predicted folded domain. (b) The full-length KIN17 protein (Fl) and the deleted proteins were detected
by staining with Ponceau red on a nitrocellulose membrane to estimate the amount of input protein. North-western
blotting was carried out with the same membrane incubated with a **P-labelled RNA probe in 0.05 M NaCl. M
corresponds to a pre-stained molecular mass marker. The zinc finger and the C-terminal domains are the hKIN17

RNA-binding domains.

differences in crystal packing. To characterise these
changes, we compare the models obtained from the
crystal soaked in Na,WO, and the Na,WO, co-
crystal (Table 2). As shown in Figure 5(a), the
hKIN17 C-terminal domain exhibits conformational
changes in loops, in particular in the second
subdomain, as well as a slight shift in the orientation
of the two SHs-like subdomains relative to each
other. However, the A-B subdomains interface is
mostly unchanged.

The C-terminal domain of hKIN17 binds RNA
through a surface comprising the highly
conserved lysine residues 302 and 391

The tungstate ions interact with several lysine
residues from the hKIN17 C-terminal domain,
two of which, K302 and K391, are strictly
conserved among KIN17 sequences (Figure 1(a)).
To confirm that K302 and K391 are also involved
in hKIN17 binding to RNA, two mutants were
produced where these lysine residues were
changed into negatively charged residues: K302E
and K391E. Binding of the mutants to RNA was
assayed by two independent methods. A binding
assay using affinity chromatography to ribonucle-
otide homopolymers immobilized on agarose
beads showed that both mutants K302E and
K391E exhibited a reduced RNA-binding ability
compared to the wild-type (Figure 6). K302E
mutation abolishes the poly(rC) and poly(rA)-

binding activity and clearly reduces the poly(rU)
and poly(rG)-binding activity of the C-terminal
domain of hKIN17. The K391E mutant has a re-
duced RNA-binding activity, in particular con-
cerning its poly(rU) binding activity. These results
were further confirmed by performing a North-
western analysis using P end-labelled poly(G)
and poly(U) RNAs. This experiment showed that
the K302E and K391E mutations abolish the poly
(rU)-binding activity and reduce the poly(rG)-
binding activity of the C-terminal domain of
protein hKIN17 (Supplementary Data). NMR
spectroscopy of the mutant proteins shows that
the charge reversal mutants have a three-dimen-
sional structure similar to that of the native
protein (data not shown), indicating that the
surface mutations do not affect their global
folding or structural integrity. Thus, we conclude
that the two highly conserved lysine residues
K302 and K391 are implicated in RNA binding of
the C-terminal domain of hKIN17.

Discussion

Contribution of the hKIN17 C-terminal domain to
RNA binding

A KOW motif was identified from sequence
analysis in the C-terminal domain of hKIN17.
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Figure 4. RNA-binding properties of the hKIN17 C-
terminal domain. (a) Purified recombinant hKIN17
C-terminal domain (Cter) or in fusion with a GST-tag
and purified GST protein as a negative control were
incubated with each ribonucleotide homopolymers and
washed with 0.1IM NaCl. The proteins retained by the
immobilized homopolymer RNAs were analysed by
immunoblotting. HKIN17 C-terminal domain shows a
clear preference for poly(rG) and poly(rU) homopoly-
mers. (b) Characterization of the poly(rG) and poly(rU)
RNA interaction with the hKIN17 C-terminal domain
alone or in fusion with a GST-tag. Purified recombinant
proteins were mixed with immobilized poly(rG) and
poly(rU) under various binding conditions, as indicated.
Std corresponds to the following binding buffer: 20 mM
Tris-HCl (pH 7.4), 2.5 mM MgCl,, 0.5% (v/v) Triton X-
100, 100 mM NaCl. The retained proteins were washed
under the conditions described for each lane. Hep
corresponds to incubation with 1 mg/ml of heparin.
The hKIN17 C-terminal domain binds poly(rG) and poly
(rU) in salt-resistant and heparin-resistant conditions.

From the known structure of the large ribosomal
subunjt,]9 the KOW sequence motif occurs within
an SHj-like fold. It was thus predicted that the
hKIN17 C-terminal domain should exhibit an
SHs-like fold. Surprisingly, it contains two struc-
turally similar SHs-like folds. The predicted KOW
sequence element begins in the loop before Rlp
strand and finishes in the loop PB2sR3s. Loop
P1R2 is four residues larger in subdomain A
compared to subdomain B, and this insertion
prevents the detection of a KOW motif in
subdomain A, even if the canonical conserved
glycine exists at position 348. On the contrary,
loops p2B3 and P3R4 are larger in subdomain B.
Our RNA interaction studies strengthen the
notion that KOW sequence containing domains
are involved in RNA binding.

Tungstate derivatives were prepared either by
soaking preformed crystals in a solution of Na,WO,
or by co-crystallising in the presence of Na,WO,.

Methodologically, the two approaches are comple-
mentary. In soaked crystals, structural rearrange-
ments can be inhibited by the rigidity of the crystal
lattice, while during co-crystallization, artefactual
sites can be created at ligand-mediated crystal
contacts. In our soaking experiments, we observed
no cracking or dissolution of the crystals and a
protein conformation identical with that of the free
form of KIN17, while the co-crystals showed that
conformational changes at the interface between
the two subdomains and in loops p2R3 and p3p4
occurred as the complex was formed in solution.
All these conformational changes that occurred in
derivatives were not of sufficient amplitude to
overcome the crystal lattice constraints. In the co-
crystals, a larger domain rearrangement was
possible and unrestrained by crystal interactions,
and the loops could adopt a more appropriate
conformation. These rearrangements are likely to
originate at the tungsten-interacting lysine residues
and are amplified at longer distances, culminating
in loops R2p3 and B34 of subdomain B.

Conservatively, we considered meaningful only
the tungstate-binding sites common to soaked
crystals and co-crystals; namely, K302, K341 and
K391. Identification of these lysine residues in-
volved in the interaction with tungstate, a phos-
phate analog, allowed us to locate putative
binding sites of the hKIN17 C-terminal domain
with the RNA phosphoribose backbone. Mutagen-
esis studies confirmed the role of K302 and K391
in RNA binding. This is quite typical, as lysine and
arginine residues are often involved in binding to
the phosphate backbone of nucleic acids.”® We
suggest that the flexibility observed after tungstate
binding might allow the protein to adapt to its
RNA target.

The RNA-binding activity of hKIN17 seems to
be distributed over several domains in the whole
protein. At the N terminus, the C,H, zinc-finger
domain shows a dual RNA/DNA-binding func-
tion in vitro, as reported recently for other zinc-
finger motifs.”” At the C terminus, the tandem
SHj-like domain binds only RNA in wvitro. Our
methodology that uses tungstate, an electron-
dense phosphate mimic, is effective in delimiting
in the crystal structure the volume occupied by
the RNA phosphate backbone in those stretches
where protein—phosphate interactions are domi-
nant, but is unable to define any sequence
specificity. The nucleotide specificity suggested
by the differential binding of the various RNA
homopolymers could arise from base—protein
interactions or a preference for a particular
phosphate backbone conformation found in its
biological RNA target. Given that the hKIN17 C-
terminal domain has the same preferences for
poly(rG) and poly(rU) as the whole hKIN17
protein, it is likely that this region of the molecule
is a major determinant of the in vivo RNA binding
of the whole hKIN17. From the structural study
of several protein-RNA complexes, it was shown
that the use of multiple domains allows extended
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Figure 5. Localisation of the tungstate binding sites in the hKIN17 C-terminal domain. (a) Superimposition on
subdomains A of the C-terminal domain of hKIN17 from native (orange), Na,WO,-soaked crystal (yellow) and from the
co-crystal (blue). Lysine residues involved in tungstate binding are shown in the corresponding backbone colour.
Tungstate anions from the soaked crystal are shown in magenta. Quantification of the conformation changes within the
subdomains (in particular, in loops p2p3 and P3R4 of subdomain B, as indicated by arrows) and of the different
positioning of subdomain B is reported in Table 2. (b) Ribbon and surface representation of the hKIN17 C-terminal
domain structure. The omit map was calculated using CNS™ around the tungstate anions cluster with data collected for
the co-crystal. Key lysine residues surrounding the tungstate anions are labelled. (c) A projection of the CONSUREF results
on the surface of C-terminal domain of hKIN17 indicates the degree of conservation from dark blue (highly conserved) to
red (variable). The orientation of the structure has been rotated slightly relative to (b), in order to distinguish the five
lysine residues in the positively charged groove. The side-chains of these lysine residues putatively involved in RNA
binding are displayed. (d) Surface representation of the C-terminal domain of hKIN17 coloured by electrostatic potential
and shown in the same orientation as (c). Blue and red colours indicate positive and negative electrostatic surface
potential, respectively.

interactions between proteins and target RNA  with limited specificity at the individual level can
sequences, thereby contributing to increase bind-  achieve high functional selectivity via cooperativ-
ing affinity and specificity. RNA-binding domains ity between their modular domains or via the
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Table 2. Superimposition of the two subdomains of the

hKIN17 C-terminal domain

Native versus
soaked crystal

Native versus
co-crystal

Superimposition on

rmsd subdomains A

rmsdsubdomains A

subdomains A 0.083 0.424
rmsd subdomains B rdesubdomains B

0.206 1.801
Superimposition on  rmsd supdomains A rmsdgubdomains A

subdomains B 0.212 3.174
I'n‘lsdsubdomains B rdesubdomains B

0.115 0.781

The rmsd values are calculated on 51 C* atoms for subdomains A
(spanning residues 284-334 of the hKIN17 sequence) and 52 C*
atoms for subdomains B (spanning residues 340-391 of the
hKIN17 sequence).

formation of complexes.” In the case of hKIN17,
the tandem SHj-like domain could cooperate with
the N-terminal zinc-finger domain to associate
optimally with specific RNAs.

A highly conserved groove, comprising K302
and K391 and other positively charged residues,
is characteristic of the KIN17 family

Analysis of phylogenetic conservation of the C-
terminal domain of hKIN17 using PSI-blast revealed
that this domain is conserved in KIN17 proteins
from metazoans, plants and parasites. Apart from
the conserved buried amino acid residues that form
part of the protein core, the CONSURF results
projected onto the three-dimensional structure of
hKIN17 C-terminal domain reveals conserved resi-
dues on the surface of the protein that could be
structural determinants for interactions with other
biomolecules.

Five lysine residues (K288, K292, K300, K302 and
K391) are part of a highly conserved and positively
charged surface (Figure 5(c)), surrounded by two
interfacial exposed and conserved hydrophobic
residues (V335 and 1336). This surface is essentially
located on the PP, hairpin of the first SHj-like
domain; it also comprises two residues of the linker
and one residue at the C terminus of the second SHs-
like domain. On the basis of the surface charge
distribution of RNA, we proposed that this posi-
tively charged groove may act as an RNA-binding
region. This is in agreement with the conclusion that
K302 and K391 are involved in RNA binding. A
similar situation, where lysine residues from differ-
ent subdomains located on the groove borders are
involved in RNA binding, is found for the Bacillus
stearothermophilus ribosomal protein L2. In the
double-B-barrel protein, one of the subdomains
adopts an SHj-like fold and the other adopts an
OB-fold.*” The two subdomains are connected by a
four-residue 319 helix and are packed tightly
approximately perpendicular one to the other. On
the basis of mutagenesis data, the authors proposed
that protein L2 has a large contact surface for the
target RNA in the cleft formed by the interface
region of the two subdomains. This RNA-binding

surface of the ribosomal protein L2 comprises
positively charged and hydrophobic residues of
both subdomains.

At the interface between the two SH3-like domains
of hKIN17 and next to the positively charged
surface, another set of highly conserved residues
(D278, E333 and E387) forms a mainly negatively
charged cleft, and three other conserved residues
(W280, Q329 and T334) form the bottom of the cleft.
These residues may constitute a surface for other
interactions.

The search for analogs of the C-terminal domain
of hKIN17 using PSl-blast highlighted significant
sequence similarity with the C-terminal region of the
metazoan and plant transcription elongation factors
SPT5, belonging to the DSIF complex, which exerts
both positive and negative effects on RNA poly-
merase IL** In addition, the search identified the
poorly studied T54 proteins from metazoa and
plants. These sequences are not as well conserved
as the KIN17 sequence, in particular concerning the
positively charged groove.

Functional significance of the tandem
SH3-like domain

In general, the interaction of the ribosomal SHj;-
like domains with RNA is mediated by the variable
loops that connect the p-strands.** Variability in the
length of the three first loops (31p2, p2p3, 3R4) is a
characteristic of SHj-like domains and is mainly
responsible for the high level of functional versatility
of this fold. Consistently, a DALI search using the
structures of the hKIN17 SHs-like subdomains
revealed that these are structurally highly similar
to SH3-like domains, exhibiting various functions,
from signal transduction (tyrosine kinase) to nucleic
acid binding (ribosomal protein L21e).

Only a few three-dimensional structures of tan-
dem SHs-like domains have been determined. The
tandem Tudor domain of human 53BP1,*** the
tandem Tudor domain of FMRP* the double
chromodomains of human CHD1* and the double

WT  K302E K391E

poly(l) .

poly(C) |- -n
poycA) -
rove) N

Figure 6. K302E and K391E mutants have a reduced
RNA binding activity. The purified wild-type hKIN17 C-
terminal domain and the K302E and K391E mutant
domains, in fusion with GST, were incubated with each
ribonucleotide homopolymers and washed with 0.1 M
NaCl. The proteins retained by the immobilized homo-
polymer RNAs were analysed by immunoblotting. Both
mutants show a reduced binding activity for the four
homopolymers.



KIN17 C-terminal Domain Structure and RNA Binding

773

Tudor domain of JMJD2A* were all reported to bind
to methylated peptides through a conserved aro-
matic cage. However, hKIN17 SHj-like subdomains
do not exhibit any solvent-exposed aromatic clus-
ters, suggesting that they do not target similar
methylated peptides. Furthermore, the association
of a region of 53BP1, containing the tandem Tudor
domains, with IR-induced foci is sensitive to
treatment with ribonuclease, suggesting that another
function of double Tudor of 53BP1 is to bind RNA.**
Thus, RNA binding could represent a more general
function of tandem SH3-like domains. In this study, a
novel RNA-binding site in a double SH3-like domain
is characterized even if it does not exclude the
possibility that this domain is involved also in
protein—protein interaction.

Conclusion

RNA-binding proteins are involved in a wide
range of cellular processes in the nucleus and in the
cytoplasm, including regulation of pre-mRNA splic-
ing, mRNA stability, translation efficiency and
transport of RNAs between the nucleus and the
cytoplasm. An RNA-binding function for hKIN17 is
in accordance with the identification of hKIN17 as a
component of the human spliceosome.'*'” Further-
more, a Tudor-like domain structurally similar to
domain III of NusG and to the subdomains of the
hKIN17 C-terminal domain was found recently in the
bacterial transcription-repair coupling factor (TRCF),
where it mediates interaction with the B subunit of
RNA polymerase.*” Consistently, the C-terminal
domain of hKIN17 as the whole protein co-immu-
noprecipitate with the RNA polymerase II in HeLa
nuclear extracts (G.P-L., unpublished results). Fur-
ther investigation will be required to identify which
cellular RNA interacts with hKIN17 and to under-
stand how hKIN17 functions in RNA metabolism.

Materials and Methods

Cloning, expression and purification of the domains
of hKIN17 protein

The C-terminal domain comprising residues 268 393 of
hKIN17 protein was prepared as described.”” Mutant
proteins (K302E and K391E) were engineered by site-
directed mutagenesis using QuikChange Site-Directed
Mutagenesis Kit (Stratagene) and expressed and purified
as the wild-type protein. The region comprising residues
1-160 of hKIN17 protein and including the zinc finger
(residues 23-50) was prepared as described.** The region
comprising residues 51-160 of hKIN17 protein was
prepared following the protocol used for the C-terminal
domain.

Crystallization, X-ray data collection and refinement

Crystallization and 1n1t1a1 phasing of the native struc-
ture have been described.? Briefly, a halide heavy-atom

derivative was prepared by brief-soaking of a native crystal
in a solution of KI. SHARP was run to calculate single
isomorphous replacement with anomalous scattering pha-
ses at 1.45 A resolution.”” After solvent flattening with
SOLOMON;,”" the polypeptlde chain was traced using a
combination of ARP/wARP** and manual rebuilding.
Model refinement was carried out with REFMAC5.>

Tungstate derivatives were prepared by both soakmg
and co-crystallization techniques as described.”” Native
crystals were soaked overnight in the crystallisation
solution (100 mM sodium acetate (pH 6.3), 10% (v/v)
ethylene glycol, 27% (w/v) PEG 6000, 0.5 M LiCl) with
1 mM Na,WO, added. The hKIN17 C-terminal domain
was co-crystallized with tungstate in a different crystal-
lisation solution (100 mM sodium acetate (pH 6.3), 25%
ethylene glycol, 20% PEG 6000) with 0.5 mM Na,WO,
added and co-crystals were then transferred to the
cryoprotectant solution (100 mM sodium acetate (pH
6.3), 25% ethylene glycol, 20% PEG 6000) with 100 mM
Na,WO, added.

Data were collected using synchrotron radiation at a
wavelength of 1.2144 A, an energy where tungsten scatters
X-rays with an anomalous contribution (f”) greater than
ten electrons. Molecular replacement was carried out
using Molrep and refinement using REFMAC5™ with
data collected on a W-soaked crystal. Strong electron
density peaks were identified in an anomalous difference
Fourier map calculated to locate the tungsten atoms With
the data collected on a co-crystal, AutoSHARP** was used
to calculate single wavelength anomalous diffraction
(SAD) phases. It was found to be crucial to reduce the
default value for the minimum allowed distance between
sites for heavy-atom detection in SHELXD as well as for
analysis of residual maps in AutoSHARP, since the
tungstate anions are best represented as a cluster. Model
refinement was then carried out with REFMAC5.”

North-western blot analysis

The 1200 bp RNA probe correspondmg to Kin17 ORF
was prepared as described.'® To allow renaturation of the
recombinant proteins after they were separated by SDS-
PAGE and transferred onto nitrocellulose membranes, the
protein blots were treated for 1-2 h at room temperature in
a hybridization buffer (10 mM Tris—-HCI (pH 7.4), 50 mM
NaCl, 1X Denhardt’s solution, 1 mM EDTA) in the
presence of 1 pug/ml of E. coli tRNA (Sigma). The blots
were then probed at room temperature for 1 h with
radiolabelled RNA probe (100,000 cpm for a 2 ml reaction
volume) in a hybridization buffer containing 2 pg/ml of E.
coli tRNA. Blots were washed twice for 15 min in the
hybridization buffer and exposed to X-ray film or to a
Phospholmager screen.

RNA homopolymer binding assay

RNA homopolymer-conjugated agarose beads (poly
(rC), poly(rG), poly(rU)) and conjugated Sepharose beads
(poly(rA)) were obtained from Sigma. Binding of the
purified recombinant proteln to RNA homopolymers was
performed as described.'® A portion (20 ul) of each RNA
homopolymer bead was incubated with an equal amount
of purified protein (3 ng), for 30 min at 4 °C with gentle
agitation in a total volume of 500 ul of binding buffer
(20 mM Tris-HCl (pH 7.4), 2.5 mM MgCl,, 0.5% (v/v)
Triton X-100 and 100 mM, 250 mM, 500 mM or 1 M NaCl.
After incubation, the beads were washed five times with
500 pul of binding buffer. Some binding reactions or washes
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were performed in the presence of 1 mg/ml of heparin or
1 mg/ml of E. coli tRNA. Proteins bound to the RNA
homopolymer beads were eluted by boiling in SDS
loading buffer and loaded onto an SDS/15% (w/v)
polyacrylamide electrophoresis gel. After electrophoretic
separation, proteins were transferred onto a nitrocellu-
lose filter (Schleicher and Schuell) and detected with anti-
GST HRP conjugate antibody (Amersham Biosciences) or
anti-KIN17 mAb Igk36 an’cibody,55 depending on the
presence or the absence of a GST tag fused to the
proteins.

NMR spectroscopy studies

NMR samples (about 1 mM) were prepared in PBS
(pH 7.0) containing 10% ?H,0, 1 mM EDTA, a protease
inhibitor cocktail (Sigma), 1 mM NaNj; and 3-(trimethyl-
silyl) [2,2,3,3-2H4] propionate (TSP) was added as a
chemical shift reference. The 1D 'H, 2D 'H-'H nuclear
Overhauser effect spectroscopy (NOESY) and 2D 'H-'H
total correlated spectroscopy (TOCSY) experiments were
carried out at 297 K on a Bruker DRX-500 spectrometer.
All spectra were processed and compared with the
program Xwinnmr (Bruker).

Sequence analysis

The amino acid sequences comparisons were optimized
using the program MUSCLE,” and were submitted to
CONSUREY in order to calculate for each residue a
conservation score based on residue similarity and
phylogenetic distance.

Protein Data Bank accession number

The coordinates and structure factors of the X-ray
structure have been deposited with the RCSB Protein Data
Bank under accession number 2CKK.
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