
J Math Imaging Vis (2007) 28: 151–167
DOI 10.1007/s10851-007-0002-0

Fast Global Minimization of the Active Contour/Snake
Model

Xavier Bresson · Selim Esedoḡlu ·
Pierre Vandergheynst · Jean-Philippe Thiran ·
Stanley Osher

Published online: 14 July 2007
© Springer Science+Business Media, LLC 2007

Abstract The active contour/snake model is one of the most
successful variational models in image segmentation. It con-
sists of evolving a contour in images toward the boundaries
of objects. Its success is based on strong mathematical prop-
erties and efficient numerical schemes based on the level set
method. The only drawback of this model is the existence
of local minima in the active contour energy, which makes
the initial guess critical to get satisfactory results. In this
paper, we propose to solve this problem by determining a
global minimum of the active contour model. Our approach
is based on the unification of image segmentation and im-
age denoising tasks into a global minimization framework.
More precisely, we propose to unify three well-known im-
age variational models, namely the snake model, the Rudin–
Osher–Fatemi denoising model and the Mumford–Shah seg-
mentation model. We will establish theorems with proofs to
determine the existence of a global minimum of the active
contour model. From a numerical point of view, we propose
a new practical way to solve the active contour propagation
problem toward object boundaries through a dual formu-
lation of the minimization problem. The dual formulation,
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easy to implement, allows us a fast global minimization of
the snake energy. It avoids the usual drawback in the level
set approach that consists of initializing the active contour in
a distance function and re-initializing it periodically during
the evolution, which is time-consuming. We apply our seg-
mentation algorithms on synthetic and real-world images,
such as texture images and medical images, to emphasize
the performances of our model compared with other seg-
mentation models.

Keywords Active contour · Global minimization ·
Weighted total variation norm · ROF model ·
Mumford–Shah energy · Dual formulation of TV

1 Introduction and Motivations

The image segmentation problem is fundamental in the field
of computer vision. It is a core component toward e.g. au-
tomated vision systems and medical applications. Its aim is
to find a partition of an image into a finite number of se-
mantically important regions. Various variational and par-
tial differential equations (PDEs)-based methods have been
proposed to extract objects of interest in images such as the
well-known and successful active contour/snake model, ini-
tially proposed by Kass, Witkin and Terzopoulos in [1]. The
number of applications of this method is numerous in vari-
ous image processing applications such as in medical imag-
ing to extract anatomical structures [2–4].

Following the first model of active contours, Caselles,
Kimmel and Sapiro in [5] and Kichenassamy, Kumar, Olver,
Tannenbaum and Yezzi in [6] proposed a new enhanced ver-
sion of the snake model called the geodesic/geometric active
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contour (GAC) model. This new formulation is said geomet-
rically intrinsic because the proposed snake energy is invari-
ant with respect to (w.r.t.) the curve parametrization. The
model is defined by the following minimization problem:

min
C

{
EGAC(C) =

∫ L(C)

0
g(|∇I0(C(s))|)ds

}
, (1)

where ds is the Euclidean element of length and L(C) is
the length of the curve C defined by L(C) = ∫ L(C)

0 ds.
Hence, the energy functional (1) is actually a new length
obtained by weighting the Euclidean element of length ds

by the function g which contains information concerning
the boundaries of objects [5]. The function g is an edge in-
dicator function that vanishes at object boundaries such as
g(|∇I0|) = 1

1+β|∇I0|2 ,1 where I0 is the original image and β

is an arbitrary positive constant. The calculus of variations
provides us the Euler–Lagrange equation of the functional
EGAC and the gradient descent method gives us the flow that
minimizes as fast as possible EGAC (see [5]):

∂tC = (κg − 〈∇g,N 〉)N , (2)

where ∂tC := ∂C/∂t , t being an artificial time parameter,
and κ , N are respectively the curvature and the normal to the
curve C. The evolution equation of active contours, defined
in (2), is well-defined because a unique viscosity solution
[5, 7] associated to the PDE (2) exists. Osher and Sethian
introduced in [8] the level set method to efficiently solve the
contour propagation problem and to deal with topological
changes. Equation (2) can be written in the level set form as
follows:

∂tφ =
(

κg +
〈
∇g,

∇φ

|∇φ|
〉)

|∇φ|, (3)

where φ is the level set function embedding the evolving
active contour C such that C(t) = {x ∈ RN |φ(x, t) = 0}.
The PDE (3) is implemented with numerical schemes based
on hyperbolic conservation laws, see Osher–Sethian [8–10],
which can be highly accurate [11, 12] to give very fine/sub-
pixel segmentations.

Despite the many good numerical results obtained with
this segmentation model and strong theoretical properties,
the snake/GAC model is highly sensitive to the initial con-
dition. Actually, the quality of the segmentation result de-
pends a lot on the choice of the initial contour, which means
that a bad initial contour can give an unsatisfactory result.
The problem of a good initial condition is related to the
non-convexity of the energy functional, EGAC, to be mini-
mized and then the existence of local minima. This draw-
back is not specific to this variational model because it is a

1Throughout the paper, function g will denote the edge detector func-
tion.

Fig. 1 The standard snake model, defined in (1–3), fails to segment
the two objects

widespread issue when dealing with variational models in
image processing which also suffer from local minima. In
the case of the GAC model, the existence of local minima
in EGAC can prevent the segmentation of meaningful ob-
jects lying in images. A simple example is given in Fig. 1.
The initial GAC (embedded in a level set function in order
to allow natural topology changes) in Fig. 1(a) can not fully
segment the two objects, Fig. 1(b), because it gets stuck in
a bad local minimum. The best segmentation result should
provide the two objects, which corresponds to another local
minimum of EGAC obtained with a different initial condi-
tion. Hence we wish to define an image segmentation model
providing the correct result independently of the initial con-
dition, which means that we look for a global minimum of
a convex functional. We notice that the global minimum for
the GAC/snake model corresponds to a point, which has no
practical sense for the image segmentation task. We thus
propose in this paper to define new active contour energies
based on the GAC model and whose global minimum corre-
sponds to the expected segmentation result. Hence, through-
out the paper, “global minimum of the active contour model”
will refer to the global minimization of new active contour
models based partially on the GAC model but not to the
global minimization of the GAC model, which has no sense
as we previously said.

In a recent work, Chan, Esedoḡlu and Nikolova [13] pro-
posed a new approach to deal with global minimum and
overcome the limitation of local minima. In their paper, they
related image segmentation to image denoising in order to
find global minimizers of two denoising and segmentation
models. The first model is a binary image denoising model
which removes the geometric noise in a given shape and the
second model is the active contours without edges (ACWE)
model of Chan and Vese [14].

In this work, we develop three theoretical global min-
imization models for the active contour model inspired
by [13]. The first model is based on the standard snake/GAC
segmentation model [1, 5, 6] and the well-known image de-
noising model of Rudin, Osher and Fatemi (ROF) defined
in [15]. We remind that image denoising aims at removing
noise in images while keeping main features such as edges
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and textures. It is interesting to notice that a unified ap-
proach of image segmentation and image denoising provides
us with a global minimization solution for the active contour
model subject to an intensity homogeneity constraint. Then
the second model is based on the standard active contour
model [1, 5, 6] and the piecewise-constant Mumford and
Shah’s model [16], which is related to the ACWE model
of Chan and Vese [14]. Our model will “reconcile” the clas-
sical GAC model, based on the detection of edges, and the
ACWE model, based on the detection of homogeneous re-
gions, in a single framework to globally minimize the active
contour model subject to intensity homogeneity constraints.
Finally, the third model uses the piecewise-smooth approxi-
mation of the Mumford–Shah model to find a global active
contour subject to smooth intensity constraints.

This paper, besides developing new theoretical models
to carry out the global minimization of the active contour
model, also proposes new numerical schemes to perform
the contour evolution in an efficient and fast way. Thus,
the traditional contour propagation problem is solved with a
dual formulation of the total variation (TV) norm introduced
and developed in [17–21]. These original implementation
schemes are easy to implement and very fast compared with
usual schemes, based on the level set approach such as (3).
Indeed, standard contour tracking algorithms use a distance
function (DF), as a level set function, to implicitly and in-
trinsically represent the active contour. The main problem
is that the DF is not a solution of (3), which means that
the level set function does not remain a DF during the con-
tour evolution process. This requires the user to periodically
re-initialize the level set function as a DF, which is time-
consuming, to ensure correct numerical computations of the
curvature and the normal to the contour. Finally, the initial
active contour has also to be embedded in a DF in the stan-
dard approach, which also requires special techniques. Thus
the main contributions of this paper are as follows:

(1) Introduction of three theoretical models to carry out
the global minimization of the active contour segmenta-
tion model based on the GAC model, the Rudin–Osher–
Fatemi denoising model and the Mumford–Shah model.

(2) Definition of an enhanced segmentation model by uni-
fying into a global minimization framework the com-
plementary approaches of the geodesic/geometric active
contours model, based on the detection of edge points,
and the active contours without edges model, based on
the detection of homogeneous regions.

(3) Presentation of new numerical schemes, based on the
dual formulation of the TV-norm, to solve the global
minimization problem of the snake propagation in an
efficient, easy and fast way.

The next section defines the global minimization model
based on the snake method and the ROF model, which pro-

vides a unified way to perform image segmentation and im-
age denoising. Then Sect. 3 introduces the second global
minimization model based on the piecewise-constant ap-
proximation of the Mumford–Shah model, which is known
as the ACWE model of Chan–Vese. We show that our model
improves the performances of the ACWE. Section 4 presents
the global minimization model based on the piecewise-
smooth approximation of the Mumford–Shah model. We
compare the proposed model in this paper to other works in
Sect. 5. Finally, we conclude in Sect. 6 and give in Appendix
the proofs of the introduced theorems.

2 Global Minimization of the Active Contour Model
Based on the ROF Model

2.1 Theoretical Model

In this section, we unify the snake segmentation model
with the denoising Rudin, Osher and Fatemi model defined
in [15]. The ROF model is one of the most famous and in-
fluential variational and PDE-based image denoising models
in image processing. This denoising technique removes the
noise while preserving the edges in images. The minimiza-
tion problem associated with the ROF model is as follows:

min
u

{
EROF(u,λ) =

∫
�

|∇u|dx

︸ ︷︷ ︸
=:T V (u)

+λ

∫
�

(u − f )2dx

}
, (4)

where � ⊂ RN is an open set representing the image do-
main, f is a given (possibly noisy) image, TV(u) is the total
variation norm of the function u, and λ > 0 is an arbitrary
parameter related to the scale of observation of the solu-
tion. Based on the approach of Chan, Esedoḡlu and Nikolova
in [13], we propose the following (non-strictly) convex en-
ergy defined for any given observed image f ∈ L1(�), any
function g : � → R+ independent of u and any positive pa-
rameter λ:

E1(u,λ) :=
∫

�

g(x)|∇u|dx

︸ ︷︷ ︸
=:T Vg(u)

+λ

∫
�

|u − f |dx. (5)

The differences between Energy (5) and the ROF model
(4) are the introduction of the weighted TV-norm, T Vg(u)

with a weight function g(x) and the replacement of the
L2-norm by the L1-norm as a fidelity measure w.r.t. the
given image f . These modifications have two important
consequences. First, the L1-norm, which has been intro-
duced and well studied in [22–29], outperforms the standard
ROF regularization model with the L2-norm for some ap-
plications and presents important geometric properties con-
cerning global minimizers of functionals, which will be used
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for the active contour global minimization problem. Sec-
ond, the introduction of a weight function, g, in the TV-
norm gives us the link between the snake/GAC model and
the proposed functional, E1, because the snake energy, de-
fined in (1), is equal to the weighted TV-norm when g is an
edge indicator function and the function u is a characteristic
function, 1�C

, of a closed set �C ⊂ � which C denotes the
(non-connected) boundaries of �C :

T Vg(u = 1�C
) =

∫
�

g(x)|∇1�C
|dx

=
∫

C

g(s)ds = EGAC(C).

Before establishing the global minimization theorem for
the active contour model, let us develop here the comparison
between the standard ROF model, the ROF model with the
L1-norm and the proposed model in (5). Chan and Esedoḡlu
studied in [29] the differences between the ROF model and
the ROF model that uses the L1-norm as a fidelity measure.
They showed that the L1-norm better preserves the contrast
than the L2-norm and the order in which the features disap-
pear, in the regularization process, is completely determined
in terms of the geometry (such as area and length) of the fea-
tures and not in terms of the contrast such as in the standard
model. Figure 2 presents the difference between the ROF
model using the L1-norm and our model using the L1-norm
and the weight function g. The parameter λ for both mod-
els in Fig. 2(a) is chosen such that the four small circles are
removed while keeping the larger one. We can see that our
model, using an edge indicator function, gives us a better
quality result because the edge function better preserves the
geometry of the original features such as the corners and the
largest disk.

Besides improving the regularization process of the ROF
model, Energy (5) provides a global minimization of the ac-
tive contour model. The global minimization result is based
on the following theorem:

Theorem 1 Suppose that g(x) ∈ [0,1] and f (x), the given
image, is the characteristic function of a bounded domain
�f ⊂ �, for any given λ > 0, if u(x) is any minimizer of
E1(., λ), then for almost every μ ∈ [0,1] we have that the
characteristic function

1�C(μ)={x:u(x)>μ}(x),

where C is the boundary of the set �C , is a global minimizer
of E1(., λ).

Proof See Appendix. �

Theorem 1 states the relation between the global mini-
mization of Energy E1 and the snake/GAC model. Indeed,

Fig. 2 Comparison between the ROF model using L1-norm as a fi-
delity measure, (c–d), and our model using the weighted TV-norm and
the L1-norm, (e–f). The difference between both models is clear. The
result generated by our model better preserves the geometry of the orig-
inal features such as the corners and the largest circle

when function u is a characteristic function of a set �C ,
whose boundary is denoted C, the expression of Energy E1

is thus equal to:

E1(u = 1�C
,λ) =

∫
�

g|∇1�C
|dx + λ

∫
�

|1�C
− f |dx

=
∫

C

gds + λ

∫
�

|1�C
− f |dx. (6)

Hence, minimizing Energy (6) is equivalent to

minimize
∫

C

gds = EGAC(C) (the snake/GAC energy (1)),

while

approximating the given image f (in the L1 sense) by a
binary function of a set/region �C .

Hence minimizing Energy E1 corresponds to find an active
contour which minimizes the GAC energy while recover-
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ing the boundary of a binary image. We underline that glob-
ally minimizing E1 is obviously not equivalent to globally
minimizing the GAC energy defined in (1). As we said in
Sect. 1, it has no sense to globally minimize the GAC model
because its global minimum corresponds to a point. Here,
we globally minimize a new active contour energy, namely
E1, partially based on the GAC and whose global minimum
corresponds to the expected segmentation result.

Finally, since Energy E1 is convex but not strictly con-
vex, it does not possess local minima that are not global
minima. Hence any minimizer of Energy E1 is a global min-
imizer. Thus, according to Theorem 1, for any minimizer
u of E1, the contour C of the set {x : u(x) > μ} for any
μ ∈ [0,1] is a global minimizer of the active contour en-
ergy for (possibly noisy) binary images such as the image in
Fig. 1.

The next two sections define two numerical schemes to
compute the global minimum of the active contour model.
Section 2.2 gives a PDE to find a global minimum and
Sect. 2.3 introduces a new algorithm, based on a dual for-
mulation of the TV-norm, to quickly compute a global min-
imizer.

2.2 Standard Minimization Based on a PDE

As we previously said, any minimizer u of E1 provides a
global minimum to the active contour model. Hence, the
standard calculus of variation model can be used to deter-
mine a PDE which is guaranteed to find a global minimizer
of the segmentation model. The minimization flow of Func-
tional E1 is:

∂tu = div

(
g

∇u

|∇u|
)

+ λ
u − f

|u − f |

= g div

( ∇u

|∇u|
)

+
〈
∇g,

∇u

|∇u|
〉
+ λ

u − f

|u − f | , (7)

where the first term of the right-hand side of (7) is the curva-
ture of the level sets of u, div( ∇u

|∇u| ), multiplies by the edge
indicator function g, the second term is a shock term which
enhances the detection of edges and the third term of the
right-hand side is a data fidelity term w.r.t. the observed im-
age f . The evolution equation (7) can be discretized with
the following explicit numerical scheme:

un+1 − un

δt
= g

(√
(D0

xf )2 + (D0
yf )2

)

× {D−
x N+,n

x,ε1
+ D−

y N+,n
y,ε1

}
+ (D0

xg)∧ ·N−,n
x,ε1

+ (D0
xg)∨ ·N+,n

x,ε1

+ (D0
yg)∧ ·N−,n

y,ε1
+ (D0

yg)∨ ·N+,n
y,ε1

+ λ
un − f√

(un − f )2 + ε2
, (8)

where D0
xf = (fix+1,iy − fix−1,iy )/2, D+

x u = uix+1,iy −
uix,iy and D−

x u = uix,iy − uix−1,iy are respectively the cen-
tral, forward and backward approximations of the spatial

derivatives in the x-direction, N±,n
x,ε = D±

x un√
(D±

x un)2+(D±
y un)2+ε

is the approximation of the normal to the level sets of u

in the x-direction, the same approximations being held in
the y-direction, (·)∧ := max(·,0), (·)∨ := min(·,0), δt be-
ing the temporal step, and ε1, ε2 small positive constants. In
all our experiments, we choose δt = 5 × 10−5, ε1 = 10−12

and ε2 = 10−4.
The numerical scheme defined in (8), determined from

the classical Euler–Lagrange equations method, is actu-
ally a very slow segmentation method because of the
regularization process of the TV-norm. Indeed, Energy
E1 is not directly minimized but the regularized version∫

g(x)
√|∇u|2 + ε1 + λ

∫ √
(u − f )2 + ε2 where ε1, ε2 are

very small parameters to be faithful to the original energy
and useful to avoid numerical instabilities. The direct con-
sequence of this regularization parameter is the obligation
to use a small temporal step to ensure a correct minimiza-
tion process. Thus a large number of iterations to reach the
steady state minimization solution is necessary. In other
words, although it is correct, the segmentation process re-
mains slow. For instance, let us come back to the first image,
Fig. 1. This time, we consider a more challenging initial ac-
tive contour because we choose a characteristic function of
a small disk outside the two objects, see Fig. 3a. The two
objects are now successfully segmented as we can see in
Fig. 3b thanks to the global minimization property of our
model but the segmentation process takes 5 minutes. In the
next section, we introduce a new numerical model based on
a dual formulation of the TV-norm which gives a fast seg-
mentation algorithm.

2.3 Fast Minimization Based on a Dual Formulation of the
TV-Norm

Based on [17–20] and more precisely on [21], we use a con-
vex regularization of the variational model:

min
u

{
E1(u,λ) =

∫
�

g(x)|∇u|dx + λ

∫
�

|u − f |dx

}
,

as follows:

min
u,v

{
Er

1(u, v,λ, θ) =
∫

�

g(x)|∇u|dx

︸ ︷︷ ︸
=T Vg(u)

+ 1

2θ

∫
�

(u + v − f )2dx

︸ ︷︷ ︸
‖u+v−f ‖2

L2

+λ

∫
�

|v|dx

︸ ︷︷ ︸
‖v‖

L1

}
(9)
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Fig. 3 Despite having an initial contour outside the two objects, a, our
segmentation-denoising model successfully extracts the two meaning-
ful objects, b, in the given noisy image. On a, b, the active contour
is given by the boundary of the set �C(μ = 0.5) = {x : u(x) > 0.5}
and the function u on d is the minimizer of Energy E1, computed with
the discretized flow (8). The parameter μ is arbitrary chosen to 0.5,
although any value between 0 and 1 can be used without changing
the segmentation result because the final function u is very close to a
binary function. Hence, our snake model, based on a global minimiza-
tion approach, is independent of the initial condition. This improves
the standard active contour result obtained in Fig. 1 where a good ini-
tial guess is necessary to get the same result

and the parameter θ > 0 is small so that we almost have
f = u+ v where the function u represents the geometric in-
formation, i.e. the piecewise-smooth regions, and the func-
tion v captures the texture information lying in the given
image.

Since the functional Er
1 is convex, its minimizer can be

computed by minimizing Er
1 w.r.t. u and v separately, and

iterating until convergence as in the references mentioned
above. Thus, the following minimization problems are con-
sidered:

(1) v being fixed, we search for u as a solution of:

min
u

{
T Vg(u) + 1

2θ
‖ u + v − f ‖2

L2

}
. (10)

(2) u being fixed, we search for v as a solution of:

min
v

{
1

2θ
‖ u + v − f ‖2

L2 +λ ‖ v ‖L1

}
. (11)

Proposition 1 The solution of (10) is given by:

u = f − v − θ divp,

where p = (p1,p2) is given by

g(x)∇(θ divp − (f − v)) − |∇(θ divp − (f − v))|p = 0.

The previous equation can be solved by a fixed point method:
p0 = 0 and

pn+1 = pn + δt∇(divpn − (f − v)/θ)

1 + δt
g(x)

|∇(divpn − (f − v)/θ)| . (12)

Proof See Appendix. �

Proposition 2 The solution of (11) is given by:

v =

⎧⎪⎨
⎪⎩

f − u − θλ if f − u ≥ θλ,

f − u + θλ if f − u ≤ −θλ,

0 if |f − u| ≤ θλ.

Proof See Appendix. �

The iteration scheme (12) is straightforward to imple-
ment. The discrete divergence operator div is given by [19]:

(divp)ix,iy =

⎧⎪⎪⎨
⎪⎪⎩

p1
ix ,iy

− p1
ix−1,iy

if 1 < ix < Nx,

p1
ix ,iy

if ix = 1,

−p1
ix−1,iy

if ix = Nx,

+

⎧⎪⎪⎨
⎪⎪⎩

p2
ix ,iy

− p2
ix ,iy−1 if 1 < iy < Ny,

p2
ix ,iy

if iy = 1,

−p2
ix ,iy−1 if iy = Ny,

and the discrete gradient operator is as follows [19]:

(∇u)ix ,iy = ((∇u)1
ix ,iy

, (∇u)2
ix ,iy

)

with

(∇u)1
ix ,iy

=
{

uix+1,iy − uix,iy if ix < Nx,

0 if ix = Nx,

(∇u)2
ix ,iy

=
{

uix,iy+1 − uix,iy if iy < Ny,

0 if iy = Ny.

Finally, in all experiments, initial values are chosen to be
u0 = v0 = p1

0 = p2
0 = 0, the temporal step is equal to δt =

1/8 and a stopping test is max(|un+1 −un|, |vn+1 −vn|) ≤ ε.

2.4 Results

The new active contour model, given by the global mini-
mization of Energy (9), is applied to Fig. 1. The numeri-
cal energy minimization based on the dual formulation of
the TV energy, and not on the classical technique of Euler–
Lagrange equations such as in Sect. 2.2, gives us the same
result, see Fig. 4a, in less than 5 seconds! We remind the
reader that 5 minutes was necessary in the case of the Euler–
Lagrange equations method. Furthermore, the implementa-
tion of the minimization is straightforward. Hence, our new



J Math Imaging Vis (2007) 28: 151–167 157

Fig. 4 Global minimization of the active contour/snake model with
a dual formulation of the TV-norm proposed in Propositions 1 and 2.
Our segmentation successfully extracts the two meaningful objects, a,
in less than 5 seconds! b, c present the final functions u and v which
minimize the regularized energy Er

1 defined in (9). The minimization
of Functional Er

1 carries out the image decomposition task because
u represents the geometric information, i.e., the piecewise-smooth re-
gions, and v captures the texture information lying in the given image.
Of course, this model also improves the standard active contour result
obtained in Fig. 1 where a good initial guess is needed to get the same
result. Here the initial condition is u0 = v0 = p1

0 = p2
0 = 0. We also

have λ = 0.1, θ = 1

snake model provides not only a global minimum indepen-
dent of the initial contour position but also an easy and fast
algorithm to carry out the segmentation process. This new
way to solve the active contour problem is also numerically
much faster than classical methods used in [5, 6] that con-
sists of embedding the snake in a distance function and re-
initializing it periodically to insure correct numerical com-
putations of the curvature and the normal to the level sets.

It is interesting to note that our segmentation frame-
work unifies image segmentation (snake model), image de-
noising (ROF model) and now image decomposition us-
ing the energy functional (9). Indeed, the introduction of
the function v in the minimization problem, naturally cap-
tures the textural part lying in images. Image decomposi-
tion [20, 21, 30, 31] consists of separating an image into its
structural parts, representing by the geometric/piecewise-
smooth regions, and textural parts, containing textures and
noise. Thus the minimization of Energy (9), leading to the
global minimum of the segmentation model, simultaneously
performs an image decomposition which improves the seg-
mentation task. Indeed, consider Fig. 5. The standard GAC
fails to segment the rectangle, Fig. 5b, because it gets stuck
in textures whereas our model, thanks to the separation be-
tween geometric regions and textures, is able to capture the
black rectangle, Fig. 5c. Finally, performing image segmen-
tation and image decomposition at the same time can be use-
ful for other image processing tasks such as pattern recogni-
tion.

We also apply our model on a real-world image, Fig. 6(a),
corrupted with a salt-and-pepper noise unlike Fig. 1 which is
distorted by a Gaussian additive noise. Our model success-
fully extracts the meaningful part of the given image corre-
sponding to the original text.

Fig. 5 The image decomposition used by the active contour/snake
model improves the segmentation task. We mixed a black rectangle
with a texture pattern. a shows the segmentation obtained with a stan-
dard GAC defined in (1–3). The standard snake fails to segment the
black rectangle because it gets stuck in the textures. However, our
model is able to able to capture the black rectangle, c, thanks to the
image decomposition which separates the geometric part, d, and the
texture part, e, from the given image. We have u0 = v0 = p1

0 = p2
0 = 0

and λ = 0.001, θ = 0.05

Fig. 6 Application of our segmentation model to a real-world im-
age. The global minimization of the snake model extracts the text,
(b–c), initially corrupted by a salt-and-paper noise. The segmenta-
tion-denoising model allows us to denoise the given image and recover
the original text. The advantage of the proposed snake model compared
with the standard active contour model is obvious on this picture. We
have λ = 0.0001, θ = 1

3 Global Minimization of the Active Contour Model
Based on the Mumford–Shah Model: The Piecewise
Constant Case

The previous section defined a new image segmentation
method based on the ROF model to determine a global
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minimum of the standard geodesic/geometric active contour
model. This new model is thus independent of the initial
contour position. However, it is designed for (noised) binary
images such as Figs. 1, 5 and 6. In this section, we propose
to extend the previous technique to grey-scale images.

3.1 Theoretical Model

We consider the global minimization problem of the ac-
tive contour/snake model [1, 5, 6] using the well-known
Mumford and Shah’s (MS) functional [16] and the Chan
and Vese’s model of active contours without edges (ACWE)
[14]. The MS model is one of the most influential variational
model to solve the image segmentation problem. This model
determines the optimal piecewise smooth approximation of
a given image, which is equivalent to partition an image into
distinct homogeneous regions which boundaries are sharp
and piecewise regular. The ACWE model is also an im-
portant segmentation model based on curve evolution tech-
niques, the level set approach and the MS model. This model
detects boundaries of objects based on the detection of ho-
mogeneous regions, like in the MS model, and not on the de-
tection of large image gradients such as in the classical snake
model. The efficiency of the ACWE model is presented in
[14] on various experimental results for which the classical
snake model, based on the image gradient, is not applica-
ble. Chan and Vese also noticed on experimental results that
their model has the tendency to compute a global minimizer.
Finally, Chan, Esedoḡlu and Nikolova proved in [13] that a
global minimum to the ACWE model exists.

In our approach, we propose to determine a global mini-
mum of the snake model by enhancing the standard ACWE
method. The enhancement is realized by unifying the clas-
sical GAC model with the ACWE model in a global mini-
mization framework to detect at the same time object edges,
based on the detection of large image gradients and homoge-
neous intensities regions. Hence, we unify the complemen-
tary approaches of the geodesic/geometric active contours
model and the active contours without edges model to cre-
ate an improved segmentation model. We will show that our
model, besides being independent of the initial condition,
improves the model of Chan and Vese when the contrast be-
tween meaningful objects and the background is low. Then,
we will propose a fast numerical model, easy to implement,
to carry out the image segmentation.

The variational model of ACWE, which corresponds
to the two-phase piecewise constant approximation of the
Mumford and Shah’s model, is as follows:

min
�C,c1,c2

{
EACWE(�C, c1, c2, λ) = Per(�C)

+ λ

∫
�C

(c1 − f (x))2dx

+ λ

∫
�\�C

(c2 − f (x))2dx

}
, (13)

where f is the given image, �C is a closed subset of the
image domain �, Per(�C) is the perimeter of the set �C , λ

is an arbitrary positive parameter which controls the trade-
off between the regularization process and the fidelity of the
solution w.r.t. the original image f and c1, c2 ∈ R. The vari-
ational model (13) determines the best approximation, in the
L2 sense of the image f as a set of (non-connected) regions
with only two different values, c1 and c2. If �C is fixed,
the values of c1 and c2 which minimize the energy EACWE

are the mean values inside and outside �C . Finally the term
Per(�C) imposes a smoothness constraint on the geometry
of the set �C which separates the piecewise constant re-
gions.

The minimization problem (13) is non-convex since min-
imization is carried over functions that take only the val-
ues c1 and c2, which is a non-convex collection. Hence,
the optimization problem can have local minima, which im-
plies solutions with wrong scales of details. Despite the non-
convex nature of (13), a natural way to determine a solution
(�C, c1, c2) is a two-step algorithm where c1 and c2 are first
computed, then the region �C is updated to decrease the en-
ergy EACWE. Chan and Vese proposed in [14] a solution to
determine an evolution equation for the region �C based on
a level set based approach. They represent the regions �C

and �\�C with the Heaviside function of a level set func-
tion (which models a characteristic function). Hence the en-
ergy EACWE can be written according to a level set func-
tion φ:

E2
ACWE(φ, c1, c2, λ) =

∫
�

|∇Hε(φ)|dx

+ λ

∫
�

(
Hε(φ)(c1 − f (x))2 + Hε(−φ)(c2 − f (x))2)dx,

(14)

where � is the image domain and Hε is a regularization of
the Heaviside function. The flow minimizing Energy (14) is
the following one:

∂tφ = H ′
ε(φ)

{
div

( ∇φ

|∇φ|
)

− λ
(
(c1 − f (x))2 − (c2 − f (x))2)︸ ︷︷ ︸

=:r1(x,c1,c2)

}
. (15)

In [14], authors chose a non-compactly supported smooth
strictly monotone approximation of the Heaviside function.
As a result, the steady state solution of the gradient flow (15)
is the same as:

∂tφ = div

( ∇φ

|∇φ|
)

− λr1(x, c1, c2),
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and this equation is the gradient descent flow of the follow-
ing energy:

E3
ACWE(φ, c1, c2, λ) =

∫
�

|∇φ|dx

+ λ

∫
�

r1(x, c1, c2)φdx. (16)

Based on the previous development, we propose to min-
imize the following energy functional, for any given ob-
served image f ∈ L1(�) and any parameter λ > 0, to carry
out the global minimization of the segmentation task:

E2(u, c1, c2, λ) := T Vg(u) + λ

∫
�

r1(x, c1, c2)udx. (17)

The difference between Energy (17) and (16) is based on
the weighted total variation energy, T Vg(u), of the function
u with a weight function g. This simple modification gives
us the link between the ACWE model and the standard snake
model when the function g is an edge indicator function and
the function u is a characteristic function, 1�C

. Indeed, En-
ergy (17) is in the case of characteristic functions equal to:

E2(u = 1�C
, c1, c2, λ)

= T Vg(1�C
) + λ

∫
�

r1(x, c1, c2)1�C
dx,

=
∫

C

gds + λ

∫
�

(
(c1 − f (x))2 − (c2 − f (x))2)1�C

dx.

(18)

Hence, minimizing Energy (18) is equivalent to

minimize
∫

C

gds = EGAC(C) (the snake/GAC energy (1)),

while

approximating f (in the L2 sense) by two regions �C and
�\�C with two values c1 and c2.

The previous observation, about the energy E2 and the
characteristic functions of sets, emphasizes the link between
the standard active contour model [1, 5, 6] and the ACWE
model [14]. Moreover, Energy E2 also provides us a global
minimum for the active contour model. The following the-
orem states the existence of a global minimizer for En-
ergy E2:

Theorem 2 Suppose that f (x), g(x) ∈ [0,1], for any given
c1, c2 ∈ R and λ ∈ R+, if u(x) is any minimizer of E2(., c1,

c2, λ), then for almost every μ ∈ [0,1] we have that the char-
acteristic function

1�C(μ)={x:u(x)>μ}(x),

where C is the boundary of the set �C , is a global minimizer
of E2(., c1, c2, λ).

Proof See Appendix. �

The interpretation of Theorem 2 is as follows: for
λ, c1, c2 being fixed, any minimizer u of E2, determined
with any minimization technique such as the Euler–
Lagrange equations method or another optimization method,
the set of points in the function u such as u is larger to
an arbitrary positive constant, e.g. μ = 0.5, defines a set
�C whose boundary C represents a global minimum of the
snake model subject to intensity homogeneity constraints.

Like the energy of ACWE [13], Energy E2 is homoge-
neous of degree 1 in u. This means that this evolution equa-
tion does not have a stationary solution if the minimization
to u is not restricted such as 0 ≤ u(x) ≤ 1. Thus, the con-
strained minimization problem to carry out the segmentation
task is in fact as follows:

min
0≤u≤1

{
E2(u, c1, c2, λ)

= T Vg(u) + λ

∫
�

r1(x, c1, c2)udx

}
. (19)

The constrained problem (19) is changed into an uncon-
strained minimization problem according to the following
theorem [13]:

Theorem 3 Let r1(x, c1, c2) ∈ L∞(�), for any given c1,

c2 ∈ R and λ ∈ R+, then the following convex constrained
minimization problem

min
0≤u≤1

{
T Vg(u) + λ

∫
�

r1(x, c1, c2)udx

}

has the same set of minimizers as the following convex and
unconstrained minimization problem:

min
u

{
T Vg(u) +

∫
�

λr1(x, c1, c2)u + αν(u)dx

}

where ν(ξ) := max{0,2|ξ − 1
2 |−1} is an exact penalty func-

tion provided that the constant α is chosen large enough
compared to λ such as α > λ

2 ‖ r1(x) ‖L∞(�).

Proof See Appendix. �

Like in Sect. 2.1, Energy E3 given by:

E3(u, c1, c2, λ,α) := T Vg(u)

+
∫

�

λr1(x, c1, c2)u + αν(u)dx,

is convex but not strictly convex, which mean that E3 does
not possess local minima that are not global minima. Hence
any minimizer of Energy E3 is a global minimizer. As we
did in Sect. 2.2, we could compute a global minimizer of E3



160 J Math Imaging Vis (2007) 28: 151–167

with the standard Euler–Lagrange equations technique and
the explicit gradient descent based algorithm (see [32] for
numerical details). However, as we explained in Sect. 2.2,
this numerical minimization method is very slow because of
the regularization of the TV-norm. Thus, we introduce in the
next section a new numerical model, based on a dual formu-
lation of the TV-norm, which will define a fast segmentation
algorithm, much faster than the standard snake model.

3.2 Fast Minimization Based on a Dual Formulation of the
TV-norm

The variational problem:

min
u

{
E3(u, c1, c2, λ,α)

= T Vg(u) +
∫

�

λr1(x, c1, c2)u + αν(u)dx

}

is regularized in the same way as in Sect. 2.3 based on
[17–21]:

min
u,v

{
Er

3(u, v, c1, c2, λ,α, θ)

= T Vg(u) + 1

2θ
‖ u − v ‖2

L2

+
∫

�

λr1(x, c1, c2)v + αν(v)dx

}
, (20)

where the parameter θ > 0 is chosen to be small. Since
Functional Er

3 is convex, its minimizer can be computed by
minimizing Er

3 w.r.t. u and v separately, and to iterate un-
til convergence. Thus, the following minimization problems
are considered:

(1) v being fixed, we search for u as a solution of:

min
u

{
T Vg(u) + 1

2θ
‖ u − v ‖2

L2

}
. (21)

(2) u being fixed, we search for v as a solution of:

min
v

{
1

2θ
‖ u − v ‖2

L2 +
∫

�

λr1(x, c1, c2)v

+ αν(v)dx

}
. (22)

Proposition 3 The solution of (21) is given by:

u = v − θ divp,

where p = (p1,p2) is given by

g(x)∇(θ divp − v) − |∇(θ divp − v)|p = 0.

The previous equation can be solved by a fixed point method:
p0 = 0 and

pn+1 = pn + δt∇(div(pn) − v/θ)

1 + δt
g(x)

|∇(div(pn) − v/θ)| . (23)

Proof The proof is the same as Proposition 1 when f − v is
replaced by v. �

Proposition 4 The solution of (22) is given by:

v = min
{
max{u(x) − θλr1(x, c1, c2),0},1

}
. (24)

Proof See Appendix. �

The iteration scheme (23) is straightforward to imple-
ment as in Sect. 2.3. Thus (23) and (24) are iterated in order
to minimize Energy (20). Of course, the constants c1 and c2

are updated periodically every 10 iterations. In all experi-
ments, initial values are u0 = v0 = p1

0 = p2
0 = 0, the tem-

poral step is equal to δt = 1/8 and the stopping criteria is
max(|un+1 − un|, |vn+1 − vn|) ≤ ε.

3.3 Results

The new snake model, given by the global minimization of
Energy (20), is applied to the cameraman picture, Fig. 7. The
numerical minimization based on the dual formulation of the
TV-norm, and not on the classical technique of the Euler–
Lagrange equations, gives us the same result, Fig. 7a, in less
than 10 seconds! Furthermore, as we noticed in Sect. 2.4, the
implementation of the minimization is straightforward, fast

Fig. 7 Global minimization of the active contour/snake model using
the Mumford–Shah’s model and the Chan–Vese’s model. Our segmen-
tation model “reconciles” in a consistent framework the standard GAC
model, based on the detection of edge points defined by large image
gradients, and the ACWE model, based on the detection of homoge-
neous regions defined from the Mumford–Shah energy. A minimiza-
tion of E2 realized with the Euler–Lagrange equations technique takes
about 10 minutes. Here, the numerical minimization of E2, given in b,
is carried out with a dual formulation of the TV-norm in less than 10
seconds! As in Sect. 2, the active contour in a is given by the boundary
of the set �C(μ = 0.5) = {x : u(x) > 0.5}. The parameter μ is arbi-
trary chosen to 0.5, even if any value between 0 and 1 can be used
without changing the segmentation result because the final function u

is very close to a binary function. We choose λ = 0.1, θ = 1



J Math Imaging Vis (2007) 28: 151–167 161

Fig. 8 Segmentation using the Active Contours Without Edges
(ACWE) model of Chan–Vese, b, and our model which unifies the
ACWE and the geodesic/geometric active contours (GAC), c. This syn-
thetic image illustrates one important advantage of our segmentation
model over the standard ACWE model. Indeed, whatever the value of
the fidelity constant λ, the ACWE model can not fully segment the rec-
tangular foreground object. It will always prefer to cut through the low
contrast region of the foreground object, see b. However, our segmen-
tation algorithm is able to fully capture the boundary of the foreground
object, c, even though the contrast changes are very low at the right
edge of the rectangular object, because the model uses the edge indi-
cator function g defined in the GAC model. We choose λ = 0.01, θ = 1
for b and λ = 0.0001, θ = 1 for c

and independent of the initial condition (we simply chose
u0 = v0 = p1

0 = p2
0 = 0 in Fig. 7). Hence, this new way to

solve the active contour propagation problem is numerically
more efficient than classical methods, which consists of em-
bedding the snake in a distance function and re-initializing it
periodically to insure correct computations of the curvature
and the normal to the level sets.

Our segmentation model improves not only the GAC
model but also the ACWE model when the contrast between
meaningful objects and the background is low. Indeed, let
us consider the synthetic image in Fig. 8a. At the right edge
of the rectangular foreground object, the contrast changes
are very low even though there is still a clear discontinuity
delineating the edge. The result obtained using the standard
ACWE model is shown in Fig. 8b. No matter how large the
fidelity constant λ is chosen, the model will always prefer
to cut through the low contrast region of the foreground ob-
ject (does so exactly where the contrast is 0.5). There is no
way to avoid this by varying the parameters in the model,
the active contour always misses the correct boundary at the
right edge of the rectangle by at least the amount shown.
However, the solution obtained using our segmentation al-
gorithm, shown in Fig. 8c, provides enough of edge sensi-
tivity, given by the edge indicator function g, for the active
contour to stay faithful to the actual boundary of the fore-
ground object.

Fig. 9 Our segmentation model is able to segment an important part of
the liver despite of very low contrast changes, b–d. The fine segmen-
tation result is obtained by unifying the ACWE model and the GAC
model which accurately detects boundaries thanks to the edge indica-
tor function g. The Standard ACWE can not segment as accurately as
our model as shown in Fig. 10. We choose λ = 0.5, θ = 0.1

We show the advantage of our model over the standard
ACWE model on a real-world image, Fig. 9a. Our model is
able to segment an important part of the liver, Figs. 9b and d,
despite of very low contrast changes, whereas the standard
ACWE model can not segment accurately the liver as we can
see in Fig. 10 where different values of λ was tested.

4 Global Minimization of the Active Contour Model
Based on the Mumford–Shah Model: The Piecewise
Smooth Case

The previous section defined an image segmentation model
based on the two-phase piecewise constant approximation,
also known as the cartoon version, of the MS model to de-
termine a minimum of the snake model independently of the
initial contour position. In the following section, we extend
the previous model to the two-phase piecewise smooth ap-
proximation of the MS model. The variational problem to
solve is given by Vese and Chan (VC) in [33] (see also [34]
for early work) by:

min
�C,s1,s2

{
EV C(�C, s1, s2, η, λ) = Per(�C)

+ λ

∫
�C

((s1(x) − f (x))2 + η|∇s1(x)|2)dx

+ λ

∫
�\�C

((s2(x) − f (x))2 + η|∇s2(x)|2)dx

}
, (25)
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Fig. 10 Segmentation using the ACWE model. Whatever the fidelity
constant λ, the ACWE can not produce the same result obtained in
Figs. 9b and d because it does not use an edge indicator function g. a–f
presents different results given by different values of λ

where � is the image domain, f is the given image, s1 and
s2 are two C1 functions defined on �C and on �\�C re-
spectively, λ > 0 controls the regularization of the length
of the boundary of smooth regions and η > 0 controls the
regularization of the intensities of smooth regions. The vari-
ational problem (25) determines the best approximation, in
the L2 sense, of the given image f as a set of smooth regions
represented by the function s(x) such that

s(x) :=
{

s1(x) if x ∈ �C,

s2(x) if x ∈ �\�C,

and C = ∂�C = ∂(�\�C) is the boundary between the
smooth regions. Like (13), the minimization problem (25) is
also non-convex, which implies the existence of local min-
ima and possibly unsatisfactory segmentation results. As in
Sect. 3.1, the two regions �C and �\�C are represented by
a regularized Heaviside function, Hε(.), of a level set func-
tion φ. This leads to the following energy:

E2
CV (�C, s1, s2, η, λ)

=
∫

�

|∇Hε(φ)|dx +λ

∫
�

Hε(φ)((s1 − f )2 +η|∇s1|2)dx

+ λ

∫
�

Hε(−φ)((s2 − f )2η|∇s2|2)dx. (26)

Minimizing E2
CV w.r.t. the functions s1 and s2 using the cal-

culus of variations gives us:
{

s1 − f = η�s1 in �C,

s2 − f = η�s2 in �\�C,
(27)

with the Neumann boundary conditions:
⎧⎨
⎩

∂s1
∂N = 0 on ∂�C ∪ ∂�,

∂s2
∂N = 0 on ∂(�\�C) ∪ ∂�.

And the flow minimizing the energy (26) is as follows:

∂tφ = H ′
ε(φ)

{
div

( ∇φ

|∇φ|
)

− λ
(
(s1 − f )2 − (s2 − f )2 + η|∇s1|2 − η|∇s2|2

)
︸ ︷︷ ︸

=:r2(x,s1,s2,η)

}
.

(28)

If a non-compactly supported smooth approximation of the
Heaviside function is chosen, the steady state solution of the
gradient flow (28) is the same as:

∂tφ = div

( ∇φ

|∇φ|
)

− λr2(x, s1, s2, η)

and this equation is the gradient descent flow of the energy:

E3
CV (φ, s1, s2, η, λ)

=
∫

�

|∇φ| + λ

∫
�

r2(x, s1, s2, η)φdx. (29)

As a result, the following constrained minimization problem
is proposed for any given image f ∈ L1(�) and any positive
parameter λ > 0:

min
0≤u≤1

{
E3(u, s1, s2, η, λ)

=
∫

�

g|∇u|dx + λ

∫
�

r2(x, s1, s2, η)udx

}
. (30)

We point out that the two functions s1 and s2 in the for-
mulation (26) need to be defined only on their respective
domains (namely �C and �\�C ) because of the Heaviside
function. However, in the relaxed formulation given in (30),
these functions need to be defined in the entire domain �

(by a suitable extension).
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The difference between Energy (29) and (30) is based on
the weighted total variation energy, T Vg(u), which gives us
the link between the GAC model and the MS model when
the function g is an edge indicator function and the function
u is a characteristic function, 1�C

. Indeed, Energy (30) in
the case of characteristic functions is equal to:

E3(u = 1�C
, s1, s2, η, λ)

=
∫

�

g|∇1�C
|dx + λ

∫
�

r2(x)1�C
dx,

=
∫

C

gds + λ

∫
�

((s1 − f )2 − (s2 − f )2

+ η|∇s1|2 − η|∇s2|2)1�C
dx. (31)

Hence, minimizing Energy (31) is equivalent to

minimize
∫

C

gds = EGAC(C) (the snake/GAC energy (1)),

while

approximating f (in the L2 sense) by two piecewise
smooth regions �C and �\�C .

The previous observation, about Energy E3 and charac-
teristic functions of sets, emphasizes the relation between
the standard active contour model [1, 5, 6] and the VC
model [33]. Besides, Energy E3 also provides us a global
minimum for the active contour model. Indeed, the follow-
ing theorem states the existence of a global minimizer for
Energy E3:

Theorem 4 Suppose that f (x), g(x) ∈ [0,1], for any given
s1, s2 ∈ C1(�) and λ,η ∈ R+, if u(x) is any minimizer of
E3(., s1, s2, η, λ), then for almost every μ ∈ [0,1] we have
that the characteristic function

1�C(μ)={x:u(x)>μ}(x),

where C is the boundary of the set �C , is a global minimizer
of E3(., s1, s2, η, λ).

Proof The proof is similar to the proofs of Theorems 2 and 3
when the function r1 is replaced by the function r2. �

The interpretation of Theorem 4 is as follows: for
s1, s2, η, λ being fixed, any minimizer u of E3, deter-
mined with any minimization technique such as the Euler–
Lagrange equations method or another optimization method,
the set of points in the function u such as u is larger to
an arbitrary positive constant, e.g., μ = 0.5, defines a set
�C whose boundary C represents a global minimum of the
snake model.

Finally, a minimizer of the energy E3 can be found us-
ing the Euler–Lagrange equations technique like in Sect. 2.2

Fig. 11 Segmentation using the GAC model and the two-phase piece-
wise smooth approximation of the MS model defined by Vese–Chan
in [33]. b presents the final active contour and d the optimal two-phase
piecewise smooth approximation of the given image

(see [32] for numerical details) or the dual formulation of the
TV-norm like in Sect. 3.2. Figure 11b presents the segmen-
tation of the cameraman picture carrying out by the mini-
mization of energy E3 and Theorem 4. Figure 11d shows
the optimal two-phase piecewise smooth approximation of
the original image given by the MS model. Notice that the
two functions s1, s2 are initially chosen to f and updated
every 10 iterations according to (27). Finally, Fig. 12 present
the segmentation and the denoising of a smooth foreground
object.

5 Comparison with Related Works

In this section, we consider three works related with our ap-
proach.

The first related approach is naturally the work of Chan,
Esedoḡlu and Nikolova [13] because the global minimiza-
tion of the snake/GAC model proposed in this paper is in-
spired by their work. However, our approach is more gen-
eral because we propose a unified framework to use the
GAC model and the ACWE model. Experimental results
in Sect. 3.3 demonstrate the advantage of using the GAC
model with the ACWE model when the contrast changes be-
tween meaningful objects and the background are very low.
Finally, we propose a fast numerical scheme to perform the
global minimization of our variational model, which is not
the case in [13].

The second related work is the paper [35] of Cohen and
Kimmel which also addresses the problem of determining
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Fig. 12 Segmentation using the GAC model and the two-phase piece-
wise smooth approximation of the MS model defined by Vese–Chan
in [33]. Our segmentation model also performs at the same time the
image denoising because d presents the regularized version of a

a global minimum for the GAC energy. Their approach is
different from ours since it is focused on finding a minimal
path between two given end points of an open curve. As no-
ticed in [36], object segmentation is not easy to carry out in
their approach because the method needs a number of points
on the boundary of the object to be extracted. Furthermore
the model is naturally designed to capture open curves, such
as minimal paths on road images, but not directly closed
curves because it requires a complementary method based
on a topology-based saddle search routine.

Finally, in [36], Appleton and Talbot propose to deter-
mine a global minimum for the GAC model for closed
curves under the restriction that the curve contains a spec-
ified internal point. Authors present very good object seg-
mentation results in various medical images. However, the
need of a specified internal point can limit the segmentation
process because it means that object with multiple closed
curves can not be extracted without a set of seed points. For
example, the two objects presented in Fig. 1 can not be di-
rectly segmented with only one internal point. Their model
needs to detect two internal points, which is not our case.
Finally, the extension of their model to higher-dimensional
images is not straightforward whereas the extension is nat-
ural in our approach.

6 Conclusion

As we said at the beginning, the active contour/snake model
is a well-known image segmentation model which is more
and more used in various image processing applications

such as in automated surveillance, graphics animation, ro-
botics or medical imaging. Its success is based on strong
theoretical properties and efficient numerical schemes. The
only drawback of this segmentation model is the existence
of local minima in its functional energy, which makes criti-
cal the initial contour to extract meaningful objects lying in
images. Hence we proposed in this paper a new approach to
determine a global minimum of the snake energy in order
to become independent of the initial position of the contour.
We think that this new approach can have numerous appli-
cations in the image processing tasks previously mentioned.

The core of our models was to express the energy
functionals in terms of level sets as observed by Strang
in [37, 38] and solve geometric problems as proposed by
Chan–Esedoḡlu–Nikolova [13]. Thus we defined three new
variational models based on the unification of the classical
snake/GAC model [1, 5, 6], the denoising Rudin–Osher–
Fatemi model [15], the segmentation Mumford–Shah model
[16] and the active contours without edges model [14]. In
the case of the ROF model, we obtained a global minimiza-
tion theorem for binary images. It was interesting to notice
that the computation of the global minimum was done by
decomposing an image into a geometric part, i.e., smooth
part, and a texture part as in [20, 21]. Experimental results
showed that the image decomposition improves the segmen-
tation task. In the case of the ACWE model of Chan–Vese
for grey-scale images, we showed that our model improves
classical segmentation results at the location of smooth tran-
sitions between objects and the background thanks to the
edge indicator function.

We established theorems to prove the existence of global
minimizers to our segmentation variational models. We de-
termined not one but several global minima of the active
contour model, which looks to be a drawback. However, all
global solutions are close to each other because the mini-
mizers u are very close to binary functions.

We also proposed efficient and fast numerical schemes to
globally minimize the variational segmentation models. The
proposed algorithms, based on a dual formulation of the TV-
norm proposed and developed in [17–21], are easy to imple-
ment. This new way to solve the standard contour propaga-
tion problem allows us to avoid the usual drawback in the
level set approach that consists of initializing the active con-
tour in a distance function and re-initializing it periodically
during the evolution to ensure a correct computation of the
curvature and the normal to the level sets, which is time-
consuming. See [39] for more details and another approach
to solve the re-distancing problem.

Future works will investigate the extension of this global
minimization approach to other image processing varia-
tional models, which most of them suffers from the exis-
tence of local minima. One application of our work has been
done in [40] to unify image segmentation, image denoising
and image inpainting.
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Appendix

Definition 1 Let � ⊂ RN be an open set, u ∈ L1(�) and g a
positive valued continuous and bounded function in �. The
weighted total variation norm of u with the weight function
g is defined by

T Vg(u) =
∫

�

g(x)|∇u|dx = sup
ϕ∈�g

{∫
�

u(x)divϕ(x)dx

}
,

where

�g := {
ϕ ∈ C1(�,R) : |ϕ(x)| ≤ g, for all x ∈ �

}
.

Strang in [38] defines the coarea formula for the T Vg-
norm as follows:
∫

�

g|∇u| =
∫ ∞

−∞

(∫
γμ

gds

)
dμ

=
∫ ∞

−∞
Perg(Eμ := {x : u(x) > μ})dμ,

where γμ is the boundary of the set Eμ on which u(x) > μ.
Hence, the term Perg(Eμ) = ∫

γμ
gds is the perimeter of the

set Eμ weighted by the function g.

Proof of Theorem 1 The proof is in [13], based on [37, 38],
by replacing the TV-norm by the weighted TV-norm intro-
duced in Definition 1. It basically consists of expressing En-
ergy E1, defined in (5), in terms of the level sets of u and f

and solving a geometric problem point-wise in μ. �

Proof of Proposition 1 The proof is based on [17, 19]. The
u-minimization in Er

1 is

min
u

{∫
�

g(x)|∇u|dx + 1

2θ

∫
�

(u − (f − v)︸ ︷︷ ︸
=:f2

)2dx

}
. (32)

We proceed exactly as in [17] and [19]. As shown in [17],
(32) can be written with the dual variable p = (p1,p2):

min
u

max|p|≤g

∫
�

udivp + 1

2θ
(u − f2)

2dx.

One can now switch the min and the max to obtain the equiv-
alent

max|p|≤g
min

u

∫
�

udivp + 1

2θ
(u − f2)

2dx. (33)

The inner minimization in (33) is point-wise in u. Carrying
it out gives:

divp + 1

θ
(u − f2) = 0 ⇒ u = f − v − θ divp. (34)

Substituting the expression (34) for minimal u into the max–
min problem (33) gives

max|p|≤g

∫
�

(f2 − θ divp)divp + θ

2
(divp)2dx.

Simplifying a bit:

max|p|≤g

∫
�

f2 divp − θ

2
(divp)2dx. (35)

Variations of Energy in (35) with respect to the vector field
p give:
∫

�

(−∇f2 + θ∇ divp) · δpdx.

Along with the point-wise constraint |p|2 −g2 ≤ 0, one gets
the optimality condition:

−∇(θ divp − f2) + λ(x)p = 0, (36)

where the Lagrange multiplier λ(x) ≥ 0 for all x. As Cham-
bolle shows in [19], it can be determined and eliminated as
follows: If the constraint is not active at a point x, i.e., if
|p(x)|2 < g2(x), then λ(x) = 0. Otherwise, if the constraint
is active at a point x, i.e., if |p(x)|2 = g2(x), then

|∇(θ divp − f2)|2 − λ2g2(x) = 0,

which leads to the conclusion that in either case, the value
of λ(x) is given by:

λ = 1

g(x)
|∇(θ divp − f2)|. (37)

Substituting (37) into (36) gives:

−∇(θ divp − f2) + 1

g(x)
|∇(θ divp − f2)|p = 0. (38)

We can use a semi-implicit gradient descent algorithm, as
proposed by Chambolle in [19], to solve (38):

pn+1 = pn + δt∇(divpn − f2/θ)

1 + δt
g(x)

|∇(divpn − f2/θ)| .

Hence, the difference of the iteration process (and the whole
calculation) from the standard work of Chambolle is the ap-
pearance of the factor g(x) in the denominator. �

Proof of Proposition 2 The proof is the same as the one pro-
posed in [21, 41]. It is a simple 1-D minimization problem,
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since all the equations are independent, and the computation
is straightforward. �

Proof of Theorem 2 The proof is in [13], based on [29, 37,
38], by replacing the TV-norm by the weighted TV-norm
introduced in Definition 1. Like in the proof of Theorem 1,
it basically consists of expressing Energy (17) in terms of
the level sets of u and f and solving a geometric problem
point-wise in μ. �

Proof of Theorem 3 The proof is in [13] with the weighted
TV-norm replacing the TV-norm. �

Proof of Proposition 4 Assume that μ has been chosen large
enough (compared to λ and ‖f ‖L∞ ) so that exact penalty
formulation works. We now consider the v-minimization:

min
v

∫
�

λr1(x, c1, c2)v + αν(v) + 1

2θ
(v − u)2dx.

The following claim helps with this step:

Claim If u(x) ∈ [0,1] for all x, then so is v(x) after the v-
minimization. Conversely, if v(x) ∈ [0,1] for all x, then so
is u(x) after the u-minimization.

This claim allows us to ignore the ν(v) term: Its presence
in the energy is equivalent to cutting off v(x) at 0 and at
1 (similar to what happens in [21]). On the other hand, if
v(x) ∈ [0,1], then the point-wise optimal v(x) is found as:

θλr1 + (v − u) = 0 ⇒ v(x) = u(x) − θλr1(x, c1, c2).

Thus, the v-minimization can be achieved through the fol-
lowing update:

v = min
{
max{u(x) − θλr1(x, c1, c2),0},1

}
. �
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