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Abstract. We present a method for segmenting white matter tracts
from high angular resolution diffusion MR images by representing the
data in a 5 dimensional space of position and orientation. Whereas cross-
ing fiber tracts cannot be separated in 3D position space, they clearly
disentangle in 5D position-orientation space. The segmentation is done
using a 5D level set method applied to hyper-surfaces evolving in 5D
position-orientation space.

In this paper we present a methodology for constructing the position-
orientation space. We then show how to implement the standard level
set method in such a non-Euclidean high dimensional space. The level
set theory is basically defined for N-dimensions but there are several
practical implementation details to consider, such as mean curvature.
Finally, we will show results from a synthetic model and a few preliminary
results on real data of a human brain acquired by high angular resolution
diffusion MRI.

1 Introduction

Diffusion Weighted Magnetic Resonance Imaging is a modality that permits non-
invasive quantification of the water diffusion in living tissues. The tissue structure
will affect the Brownian motion of the water molecules which will lead to an
anisotropic diffusion. Today, a diffusion tensor (DT) model is the most frequently
used method to map the structural anisotropy. The tensor model, which basically
only contains information about anisotropy and principal diffusion, has limited
possibilities of resolving complex brain white matter architectures, particularly
in regions with fiber crossings.

A recent approach first presented by Wedeen et al. in (1) is the Diffusion
Spectrum Imaging (DSI) that provides a full 3D probability density function



(PDF) of the diffusion at each location. This PDF provides a detailed descrip-
tion of the diffusion and manages to resolve highly complex cytoarchitecture
such as fiber crossings. For simplicity the PDF is normally reduced to an orien-
tation density function (ODF) which is the radial projection of the PDF. Other
approaches such as g-ball imaging (2) and persistent angular structure (PAS) (3)
aim at directly obtaining the ODF without first measuring the PDF. All these
methods are commonly referred to as high angular resolution diffusion (HARD)
MRI. Currently, the HARD data is used to map cerebral connectivity through
fiber tractography (4).

Jonasson et al. (5) presented a 3D geometric flow algorithm designed for
segmenting fiber tracts from DT-MRI. The method was based on the assumption
that adjacent voxels in a tract have similar properties of diffusion and we defined
similarity measures between tensors to propagate the surface. Various problems
can benefit from fiber tract segmentation, like quantitative investigation of the
diffusion inside the chosen fiber tracts, white matter registration and surgical
planning.

By diagonalizing the DT several practical representations can be computed
such as direction of principal diffusion, anisotropy and comparisons between dif-
ferent compartments of diffusion. These simplifications are less straightforward
for the ODF. Frank et al. (6) presented a way of determining the anisotropy from
HARD data but only anisotropy is not sufficient for segmentation of white mat-
ter tracts and the problem of crossing fibers remain unsolved. By augmenting the
dimensionality of our data many of these problems can be solved simultaneously.
Instead of considering a 3D map of ODFs, we define a 5D position-orientation
space (POS) as a combination of a spherical space of orientation and an Eu-
clidean space of position. Two fiber tracts with different directions of diffusion
that are crossing each other in the same voxel become separated in this 5D space
and can be segmented separately without interference from one another. Another
positive aspect of this 5D space is that it consists of only scalar values which
allow us to adapt classical segmentation methods for grayscale images.

Firstly we will explain the underlying principles of POS and show how to
define it from a 3D map of ODF. We will then show that it is possible to segment
white matter structures from HARDI MRI data by propagating a hyper-surface
in this non-Euclidean 5D space. The evolution of the interface is implemented
using the level set method proposed by Osher and Sethian (7; 8; 9). The level
set formalism is defined for N-dimensions and we will show how to practically
apply it in 5D, with an emphasis on the computation of mean curvature in 5D.

2 Background Theory

2.1 Position Orientation Space

A HARDI experiment provides a 3D map of ODFs. Thus, for every position
vector x = (z,, z), in Euclidean 3D space, R3, there is an ODF measuring the
intensity of diffusion in any direction, u = (i, #) where u is a vector restricted



to the unit sphere, S2, with (0 < 6 < 27,0 < ¢ < 7). The cartesian product of
R? and S? forms POS that we note §2:

(x,u) € 2 =R x §2. (1)

And its implied metric tensor allows us to determine the gradient operator
as:
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To get some intuition about what POS is and why it is useful for fiber tract
segmentation is it instructive to consider the case of a 2D map of ODF restricted
to a plane. In Fig. 1la a 2D slice of ODF's is shown. The slice shows a crossing
between two fiber tracts. The ODFs in the figure are restricted to the plane and
can therefore be described through only one angle, 6. The intensity of the ODF
varies with the angle. In the case where we only have one fiber there will be a
peak in the intensity for the angle that corresponds to the direction of the fiber.
In positions where two fiber tracts cross there will be two intensity peaks, one
for the direction of each fiber. These two cases are illustrated in Fig.1b.

The third dimension represents the orientation of diffusion, hence the 2D
ODF map is mapped as a 3D scalar field. This means that even though the two
fiber tracts cross over in 2D, they will be separated in 3D and can therefore
easily be segmented. Fig. 2 shows how the two fibers are segmented in 3D and
then projected back to 2D.
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Fig. 1. Example of POS for a 2D slice of a volume of ODFs. The intensity is plotted
for each angle.



Fig. 2. Example of POS for a 2D slice of a volume of ODFs.

2.2 Level set evolution of N-dimensional interfaces.

Since the level set method was first introduced by Osher and Sethian (7; 8; 9) it is
becoming a more and more popular numerical tool within image processing, fluid
mechanics, graphics, computer vision etc. It is basically used for tracking moving
fronts by considering the front as the zero level set of an embedding function,
called the level set function, of the moving front. In image processing the level
set method is most frequently used as a segmentation tool through propagation
of a contour by using the properties of the image as well as properties of the
contour itself, such as the mean curvature. It was originally used to detect edges
in an image (10), but more recent applications detect textures, shapes, colors etc.
The level set theory was initially used for two dimensional images but its general
formulation makes it possible to use for N-dimensional images. The theoretical
extension to three dimensions is commonly used and even though some of the
properties of the 2D curves, such as the property of shrinking to a point under
curvature flow, do not hold in the 3D case, the main part of the theory remains
valid and works well for segmentation of 3D objects (11). The extension to even
higher dimensions is straightforward.

Let the level set, ¢(x,t), be a smooth function where x € POS and ¢ € R*.
Then the hyper-surface in 5-dimensions is represented by the level set defined
by {x = (z,y, 2,¢,0) € POS : ¢(x,t =0).

The evolution of the hyper-surface embedded in the level set function is
generally described through this equation:

oo
& =F|Vol, (3

where F' is a speed function. For the particular case



F is the mean curvature of level sets of ¢ and (3) becomes the 5-D mean
curvature flow.

Chan and Vese presented in (12) a method for segmenting images without
edge detection by using the weak formulation of the Mumford-Shah functional
(13). The resulting equation for the interface evolution becomes (12):
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where {2 is the image domain, in our case POS, and 042 is the boundary of
2. 5.(¢) is the e-regularized Delta function (12) and g > 0 is a fixed parameter.
ug is a given image which in our case is the ODF map represented as a scalar
volume of intensity values in POS and ¢; and ¢ are defined as:
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Here we have that H(¢) is the e-regularized version of the Heaviside function
and ¢; and ¢y are respectively the averages of the image ug on the region {¢ > 0}
and {¢ < 0}.

3 Method and implementation

3.1 Creating POS

We have constructed the 5D POS from a 3D map of ODF. The values of the
ODF are placed on a 2D grid. Due to the symmetry of the diffusion data only a
hemisphere is sampled so we have that:

(0.0) € {0, 7w = 2} {0, 7o), (7)

where n is the sampling step.

Due to the spherical geometry of the space there is a periodicity in the data.
The two extremities along the #-axis are neighbors. Due to the symmetry of the
diffusion data this periodicity is also present along the p-axis. If, due to the same
symmetry, only a hemisphere is considered, the periodicity along the p-axis can
be disregarded. To cope with the periodicity of the data an exchange between
the two ends of the level set along the #-axis is made after every iteration.



3.2 Evolution of the hyper-surface.

The hyper-surface is evolved according to (5). Once the POS is defined we have
a scalar image not too different from a classical gray scale image. The specific
considerations except for the high number of dimensions are the periodicity and
the computation of the gradients, see (2). Implementing a level set function in 5D
is theoretically straightforward but practically difficult. One of the main problem
is handling the storage of the huge amount of data that is treated. Optimizing
the computation of the level set function and its re-initialization is crucial. There
is however one important issue to consider theoretically: the computation of the
curvature.

For evolving curves in 2D and surfaces in 3D the expression in (4) is already
complicated. In the 2D case the expression of the mean curvature becomes:
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Computing this equation for 5D, Mathematica gives a several pages long
answer which is not satisfactory from a numerical point of view.

A lot of work has already been done for N-D mean curvature flows (14; 15).
Hence, we propose to use the theory developed by Ambrosio and Soner (14) to
determine the mean curvature in a 5D space.

Differential geometry decomposes the mean curvature, I, into its principal
curvatures, K, such as:

K1+ ... tKkN
r=———. 9
~ (9)
The principal curvatures of a hyper-surface embedded in a level set function,

¢, of codimension one are then given by the eigenvalues of the following N x N
matrix:

1
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where P, is a projection operator onto the space normal to the nonzero vector
p:
Pp:I*]r@)'g, (11)
p

where I is the identity matrix.

To test these theories we have evolved a 5D hyper-cube through a mean
curvature flow and seen how it first turns into a hyper sphere and then finally
shrink to a point, see Fig 3.

The level set function is re-initialized at every iteration using the fast march-
ing method (16):

Vo |=1 (12)



Fig. 3. A hyper-cube evolving under 5D mean curvature flow. a) x-z-plane, b) y-6-
plane.

4 Results

4.1 Synthetic data

To test the method we constructed a 3D volume of ODFs modelling two crossing
fiber tracts, see left figure in Fig. 4. The ODFs are normalized by removing
the minimum from each ODF. One surface was initialized by placing a small
surface of a few voxels in each fiber tract. The hyper surface was evolved until
convergence and then projected back into 3D Euclidean space. The result can
be seen in Fig. 4. We see how each fiber tract is segmented completely without
influence from the other crossing fiber.

4.2 Real data

Material The diffusion images were obtained on a healthy volunteer with a
3T Philipps Intera scanner. We used a diffusion weighted single shot EPI se-
quence with timing parameters: TR/TE/A/ ¢ =3000/154/47.6/35 ms, bmax =
12000mm2/s and a spatial resolution of 2x2x3mm3. The data were acquired by
sampling g-space on a 3D grid with 515 diffusion encoded directions restricted
to the interior of a sphere of radius 5. From this acquisition the ODF map is
reconstructed according a standard DSI scheme (17).

Informed consent was obtained in accordance with institutional guidelines
for all of the volunteers.

Results The ODFs are normalized by removing the minimum from each ODF.
The small initial surfaces were placed inside brain region known to contain well



Fig. 4. a) Slice of the synthetic 3D volume of ODFs. b) The intensity of the different
angles plotted against each other. ¢) The 3D projection of the 5D result.

known fiber tracts. The result are shown in Fig. 5 and display the core of impor-
tant fiber tracts such as the corpus callosum (blue), the cortico spinal tract (red)
and the arcuate fasciculus in green. These are early results but show proof of
principle. The current problem is the handling of data storage and only smaller
volumes can be treated at the moment.

Fig. 5. Results from application on HARD MRI from a human brain. The red surface
is a part of the cortico spinal tract. The blue surface is a segment of the corpus callosum
and the green is the arcuate fasciculus.



5 Discussion and Conclusion

We have shown how extending the dimensionality of the segmentation space from
3D to 5D disentangles originally overlapping structures. We have seen from the
result on synthetic data, that crossing fiber tracts in 3D are represented in 5D
POS as separate objects characterized by intense diffusion. The results shown
for brain HARD MRI data are the early results. Due to the huge 5D matrices
only parts of the structures have been segmented. However, they clearly show
the potential of this approach to clearly delimit structures of coherent diffusion.
The problem of data handling will be solved with better computer power and a
more efficient implementation and data storage.

Further, we have shown that it is possible to implement the level set method
for evolving a hyper-surface in a non-Euclidean 5D space. To solve the problem
of the implementation of the mean-curvature flow we have proposed to use the
theory developed by Ambrosio and Soner (14).

Segmenting regions in HARD MRI is a new approach for interpreting data
with a different objective than classical fiber tractography. Fiber tractography
provides a map of the cerebral connectivity and aims at visualizing fiber tracts
as a set of lines. Our approach treats one fiber tract as one single object char-
acterized by intense and coherent diffusion. This representation gives a different
view of the brain architecture that can be more appropriate for applications
such quantitative investigation of the diffusion as well as for surgical planning
and white matter registration.
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