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Abstract. Most conventional features used in speaker authentication
are based on estimation of spectral envelopes in one way or another,
e.g., Mel-scale Filterbank Cepstrum Coefficients (MFCCs), Linear-scale
Filterbank Cepstrum Coefficients (LFCCs) and Relative Spectral Per-
ceptual Linear Prediction (RASTA-PLP). In this study, Spectral Sub-
band Centroids (SSCs) are examined. These features are the centroid
frequency in each subband. They have properties similar to formant fre-
quencies but are limited to a given subband. Empirical experiments car-
ried out on the NIST2001 database using SSCs, MFCCs, LFCCs and
their combinations by concatenation suggest that SSCs are somewhat
more robust compared to conventional MFCC and LFCC features as
well as being partially complementary.

1 Introduction

Speech recognition is the task of determining the linguistic contents of a speech
signal, while speaker authentication is the task of verifying whether a person re-
ally is who he or she claims to be. Even though both tasks are very different, the
front-end processing of speech signals is often common. Although there is some
literature on designing new and effective speech features for speaker authen-
tication [8] (i.e., Line Spectrum Pairs, Time-Frequency Principal Component
and Discriminant Components of the Spectrum), Mel-scale Frequency Cepstral
Coefficients (MFCCs), which are commonly used in speech recognition, remain
the state-of-the-art features, as far as speaker authentication is concerned. Em-
pirical studies in [12] showed that Linear-scale Frequency Cepstral Coefficients
(LFCCs) [11] achieve comparable performance to that of MFCCs [12,14]. Ac-
cording to the same study, Perceptual Linear Prediction (PLP) cepstral coeffi-
cients, which are widely used in speech recognition, did not perform significantly
better than MFCCs. Furthermore, in the same experiment setting, the perfor-
mance of PLP with RASTA-preprocessing (RASTA-PLP) [6] was slightly worse
than PLP alone. Hence, features that work better in speech recognition may not
always work better in speaker authentication.

The aim of this study is double-fold: to provide complementary features that
describe information not captured by the conventional state-of-the-art MFCC
features for speaker authentication tasks; and to examine how these features
perform alone, as compared to MFCC features. In [2, Sec. 3.3], frequency and



amplitude information are extracted from “spectral lines” [5]. Spectral lines are
extracted from the spectrogram of a signal by using thinning and skeletonisa-
tion algorithms that are often used in image-processing. Low frequency spectral
lines in this case actually correspond to the fundamental frequency or pitch. The
pair (frequency, amplitude) hence represents a point in 2D space. With quanti-
sation on frequency and amplitude, this frequency/amplitude encoded data was
classified using a feed-forward network and was shown to achieve a lower gener-
alisation error as compared to the encoding scheme which uses fixed frequency
intervals with their corresponding amplitude values. The study suggests that
frequency information, when encoded properly, can increase the robustness of a
speech recognition system.

Contrary to the first approach, in the context of speaker authentication,
Sonmez et al directly estimated the (long-term) pitch information using para-
metric models called log-normal tied mixture models [16]. Follow-up work [15]
used the (local variation of) pitch dynamics which contain speaker’s intonation
(speaking style). In both works, the resultant pitch system was combined with
the cepstral feature-based system by summation of (log-)likelihood scores over
the same utterance. They all showed improvement over the baseline system.

In the context of speech recognition, frequency information can be represented
in the form of Spectral Subband Centroids (SSCs) [9], which represent the cen-
troid frequency in each subband. In conventional MFCC features, the power
spectrum in a given subband is often smoothed out, so that only the (weighted)
amplitude of the power spectrum is kept. Therefore, SSCs provide different infor-
mation to conventional MFCCs. It has been demonstrated [9] that SSCs, when
used in conjunction with MFCCs, result in better speech recognition accuracy
than that of the baseline MFCCs; when used alone, SSCs achieve performance
that is comparable (but with slight degradation) to that of MFCCs.

Would frequency information enhance the performance of a speaker authen-
tication system? According to [15, 16], the answer is yes. How should this infor-
mation be incorporated into an existing system based on MFCC features? In this
work, SSCs are used as a preliminary study since they can be incorporated at the
frame-level (and of course at the classifier-score level) while this is not possible
in [15,16]. Furthermore, in these works, spectral information other than pitch
(e.g. higher frequency band) is not used at all. Secondly, SSCs have not been
applied to speaker authentication, constituting an interesting research question.

The rest of this paper is organised as follows: Section 2 briefly presents SSCs.
Section 3 explains the experiment setting. This is followed by empirical results
in Section 4 and conclusions in Section 5.

2 Spectral Subband Centroids

Let the frequency band [0, /2] be divided into M subbands, where F is the
sampling frequency. For the m-th subband, let its lower and higher edges be [,
and h,,, respectively. Furthermore, let the filter shape be w,,(f) and P7(f) be
the power spectrum at location f raised to the power of . The m-th subband
centroid, according to [9], is defined as:
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Fig. 1. SSC features across time

Note that the term w,,(f)P7(f) can be viewed as a bias which influences where
the centroid should be. A peak in this term leads to a higher weight in the
corresponding f. Typically, w,,(f) takes on the shape of either a square window
(ones over the m-th subband and zeros everywhere else) or a triangular window.
In the case of MFCCs, w,, is a triangular window. The same window is used
here. The use of v parameter in this function is a design parameter and is not
motivated by any psychological aspect of hearing. The v parameter has been used
elsewhere in the literature [4] as part of feature extraction (which is called a two-
dimensional root spectrum) for speech recognition. According to that study,
is a design parameter which can be optimised on a given data set and task at
hand.

Figure 1 shows a conventional spectrogram overlaid with the SSC features
with five equally-spaced bands, calculated using square windows. The utterance
contains three digits: “zero”, “one” and “two”. It can be observed that, firstly,
when there is no speech, SSCs in a given frequency subband tend to be the center
of the band. On the other hand, with the presence of speech, SSCs show some
regular trends: the trajectory of SSCs in a given subband actually locates the
peaks of the power spectrum in that subband. This coincides with the idea of
spectral lines [5] discussed earlier. However, in this context, the representation
is limited to one value per subband. Secondly, if there is not enough centroids,
then SSCs will not adequately represent a given speech signal.

Prior to testing SSCs using a real-life noisy database, we carried out sev-
eral preliminary studies on SSCs using Linear Discriminant Analysis (LDA)
under the Analysis of Variance (ANOVA) framework [10]. A subset of XM2VTS
database and the female development set of NIST2001 (same as the one de-
scribed in Section 3) were used for this test. The LDA analysis was used because
it can separate useful sources of variance (e.g. physical articulatory features)
from harmful sources of variance (e.g. handset differences, environmental and
channel noise) [7]. We outline several conclusions of the preliminary studies re-
ported in [10]:

— Based on LDA, we showed that about 12 to 16 centroids cover 99% of vari-
ance that is speaker discriminative. If less than 12 centroids are used, the
speech utterance will be under-represented.



— Additional experiments based on LDA suggest that class labels (speaker’s
identities) not separable in SSC feature space are separable in MFCC (Mel-
scale Frequency Cepsstrum Coefficient) feature space. This suggests that

SSCs are potentially complementary to MFCCs.
— The Fisher-ratio test showed that the feature space induced by MFCCs is

more separable than that induced by SSCs, thus predicting that the per-
formance due to MFCCs under matched conditions is probably better than

that due to SSCs.
— Preliminary empirical experiments on the female development subset of

NIST2001 showed that about 16 to 18 centroids are optimal for speaker

authentication.
— A theoretical study showed that mean-subtracted SSCs can somewhat reduce

the effects of additive noise. The mean subtraction is done as follows:

Cm — E{Cp} (2)
where E{C,,} is the expectation of C,, over the whole utterance in a single
access claim. The demonstration began with the assumption that a signal is
composed of additive noise and the original clean signal. Deriving SSCs and
mean-subtracted SSCs using this formulation, we showed that the additive
component is partially cancelled during the mean subtraction. Empirical

studies on NIST2001 also strongly supported this observation.
— Lastly, we showed empirically that first temporal derivates (deltas) of SSCs

can also be used to further improve the performance.

The above studies were limited to studying the characteristics of SSCs compared
to MFCCs under clean conditions. In this paper, the aspect of noise-robustness
is evaluated.

3 Experiment Setup

In this study, a subset of NIST2001 was used to evaluate how well these features
perform on telephone data with and without additive environmental noise, on
speaker authentication tasks. It was obtained from the Switchboard-2 Phase 3
Corpus collected by the Linguistic Data Consortium. In this paper, only the fe-
male subset (which is known to be slightly more difficult than the male subset)
was used for evaluation. In the original database, data for two different handsets
are present (i.e., carbon and electret). However, only data from electret hand-
sets were used (5 speakers who used the carbon handsets were removed) so that
any variation of performance, if any, will not be attributed to this factor. This
database was separated into three subsets: a training set for the world model, a
development set and an evaluation set. The female world model was trained on
218 speakers for a total of 3 hours of speech. For both development and evalua-
tion (female) clients, there was about 2 minutes of telephone speech used to train
the models and each test access was less than 1 minute long. The development
population consisted of 45 females while there were 506 females in the evaluation
set. There are 2694 accesses for the development population and 32029 accesses
for the evaluation population, with a proportion of 10% of true claimant ac-
cesses. Four types of noise (white, oproom (for operational room), factory and
lynx), taken from the NOISEX-92 database [17], were used to contaminate the
NIST2001 dataset.
The classifier used in this paper is based on Gaussian Mixture Models (GMMs),

similar to the one used in [13]. It models the statistical distribution of training



feature vectors for each client. Briefly, a common impostor GMM model (also
called a world model) is first obtained from the said 218 speakers using the
Expectation-Maximization algorithm [3]. The world model is then adapted to
each client’s speech features using Maximum a Posteriori (MAP) estimation [13].
To make a decision, an average log-likelihood ratio between the client-adapted
model and the world model (over all feature frames) is compared to a threshold
chosen on development data.

The commonly used Half Total Error Rate (HTER) is used as evaluation
criterion’. It is defined as (FAR + FRR)/2, where FAR is False Acceptance
Rate and FRR is False Rejection Rate. Here, we assume that the costs of false
acceptance and false rejection are equal and that the prior (class) distribution
of clients and impostors are equal as well. The HTER is calculated based on
a threshold which itself is estimated from a development set. This threshold is
estimated such that |FAR(6) — FRR(#)| is minimised with respect to . It is then
used to make decisions on an evaluation set. Hence, the HTER is unbiased with
respect to the evaluation set since its associated threshold is estimated a priori
on the development set. We call the resultant measure an a priori HTER and is
used whenever an evaluation set is used. The smaller the HTER is, the better
the performance.

4 Empirical Results in Mismatched Conditions

Preliminary studies in [10] showed that the following configuration of SSCs was
optimal for the speaker authentication task: 16 centroids, sampled using trian-
gular windows and spaced linearly on the Mel-scale, with delta information and
mean-subtraction. This configuration was used on the female evaluation subset
(contrary to the development subset used in [10]). Furthermore, only bands in
the 300-3400 Hz frequency range are used. The log of delta energy is also used.
To accomplish energy normalisation, the absolute log energy is not used.

There are two goals: to investigate how resistant SSCs are to mismatched
noisy conditions; and to see if concatenation of SSCs with conventional features
will improve performance. Two conventional features are used here: LFCCs and
MFCCs. The LFCCs are extracted using 24 filterbanks with 16 cepstrum co-
efficients. MFCCs are extracted using 24 filterbanks with 12 cepstrum coeffi-
cients. Several noise types are artificially added to the database at the following
Signal-to-Noise Ratios (SNRs): 18, 12, 6 and 0 decibels. Two sets of experiments
are conducted: in the first set, MFCCs, SSCs and their combined features are
trained in clean conditions and tested in noisy conditions. Hence the combined
MFCC-SSC features have 12 4+ 16 = 28 dimensions. With delta information,
which also has 28 dimensions and log energy, the resultant features have 57
(28 x 2+ 1) dimensions. Using the same configuration, the second set of exper-
iments used LFCCs instead. The resultant LFCC-SSC combined features have
65 ((16416) x 2+ 1) dimensions. GMMs with 128 Gaussians were used as classi-
fiers for all experiments. The number of Gaussians was found by cross-validation
based on the LFCCs features.

The results are shown in Figures 2 and 3 for these two sets of experiments.

! It should be noted the popular Equal Error Rate (EER) was not used here because this criterion
does not reflect real applications where a threshold must be fixed in advance. Moreover, the use
of DET or ROC curves to compare two systems has recently been shown to be erroneous and
misleading [1], despite the fact that they are widely accepted in the literature.
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Fig. 2. A priori HTERs (in %) of SSCs,
MFCCs and MFCC+SSC feature sets on
the female evaluation subset of NIST2001
database, under mismatched conditions,
using thresholds estimated on clean de-
velopment data.
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Fig. 3. A priori HTERs (in %) of SSCs,
LFCCs and LFCCHSSC feature sets on
the female evaluation subset of NIST2001
database, under mismatched conditions,
using thresholds estimated on clean de-
velopment data.

For both sets of experiments, it can be observed that MFCCs (respectively
LFCCs) perform better than SSCs under clean conditions but are not as good as
SSCs under noisy conditions. When MFCCs (respectively LFCCs) are combined
with SSCs, the resultant feature sets perform better than any of the features
when used alone, in both clean and noisy conditions. Hence, SSCs are potentially
useful as complementary features for speaker authentication.

5 Conclusions

Spectral Subband Centroids (SSCs) are relatively new features that exploit the
dominant frequency in each subband. The use of SSCs in recent literature has
shown some successes in speech recognition. In this study, the potential use of
SSCs in text-independent speaker authentication task was studied. Preliminary
findings in [10] based on ANOVA and LDA showed that SSCs are potential
complementary features to conventional features such as MFCCs. In this paper,
we valided these findings using the female development subset of the NIST2001
SwitchBoard database. Based on the results, it is concluded that that SSCs per-
form somewhat better than MFCCs in noisy conditions; and that combining
SSCs with MFCCs (and respectively LFCCs) improves the accuracy of the sys-
tem in both clean and noisy conditions compared to using any of the feature
sets alone. Hence, dominant frequencies represented by SSCs contain speaker
discriminative information, somewhat different from what MFCCs (respectively
LFCCs) provide. One potential future direction to study the usefulness of the
medium to long-term time-trajectory of SSCs. This is motivated by [15], where
it is shown that speaker’s pitch dynamics (speaker’s intonation) are useful for
speaker authentication. The advantage of using the time-trajectory of SSCs as
compared to pitch dynamics is that not only that the (low frequency) pitch is
included, the whole frequency band is actually taken into account.
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