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Abstract: Model predictive control (MPC) is a very efficient approach to con-
trol nonlinear systems, especially if the systems are high dimensional and/or
constrained. MPC formulates the problem of input trajectory generation as an
optimization problem. However, due to model mismatch and disturbances, a fre-
quent re-calculation of the trajectories is typically called for. This paper proposes
a two-time-scale control scheme that uses repeated trajectory generation in a slow
loop and time-varying linear feedback in faster loop. The latter reduces the effect
of uncertainty, which allows reducing considerably the sampling frequency of the
slow loop. The problem of trajectory generation is treated using two approaches: (i)
optimization-based MPC, and (ii) flatness-based system inversion. The two-time-
scale control scheme is illustrated via the simulation of a flying robotic structure. It
is seen that the scheme combining optimization-based MPC and linear feedback is
efficient and robust, but too slow to be considered in a real application. In contrast,
the scheme combining flatness-based system inversion and linear feedback is fast,
efficient and robust.
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1. INTRODUCTION puts. Solutions to this problem are proposed in
the literature. One possibility is to cast the prob-
lem into a robust framework, where optimization
is performed by taking the uncertainty into ac-
count explicitly. Standard robust predictive con-
trol computes a input trajectories that represent a
compromise solution for the range of uncertainty
considered (Bemporad and Morari, 1999; Lee
and Yu, 1997; Kouvaritakis et al., 2000). Such a
methodology is widely used in the process indus-
try where system dynamics are sufficiently slow to
permit its implementation. However, due to the
complexity of the calculations involved in robust
predictive control, its applications to fast dynam-

Predictive control is an efficient approach for
tackling problems with nonlinear dynamics and
constraints, especially when analytical computa-
tion of the control law is difficult (Mayne et
al., 2000; Scokaert and Mayne, 1998). Standard
predictive control involves re-calculating at ev-
ery sampling instant the inputs that minimize a
criterion defined over a horizon window in the
future, taking into account the current state of
the system.

A crucial point in predictive control is the exten-

sive use of the dynamic model. Since this model
is not always accurate, the predicted state evolu-
tion may differ from the actual plant evolution,
which requires frequent re-calculation of the in-

ics systems are rather limited.

Another solution consists of tracking the system
trajectories with a fast feedback loop. If the lo-



cal dynamics are nearly constant, linear control
theory provides efficient tools to design this feed-
back loop. However, for systems having strongly-
varying local dynamics, there is no systematic
way of designing such a feedback law (Ronco et
al., 2001; Morari and Lee, 1999; Bemporad, 1998).

This trajectory-tracking problem can be tackled
by the neighboring-extremal theory. For small de-
viations from the optimal solution, a linear ap-
proximation of the system and a quadratic ap-
proximation of the cost are quite reasonable. In
such a case, a neighboring-extremal (NE) con-
troller provides a closed-form solution to the opti-
mization problem. Hence, the optimal inputs can
be approximated using state feedback, i.e. without
explicit numerical re-optimization.

This paper presents two approaches to control
a simulated robotic flying structure known as
VTOL (Vertical Take-Off and Landing). The
structure has 4 inputs and 16 states. It is a
fast and strongly nonlinear system. The control
schemes is computed based on a simplified model
of the system, while the simulation uses the orig-
inal model.

The first control approach combines an optimization-

based predictive controller in a slow loop and a
linear time-varying NE-controller in a faster loop.
The slow loop generates the reference input and
state trajectories, while the fast loop ensures good
tracking of the state trajectories. This control
scheme is sufficiently efficient to make the re-
optimization of the reference trajectories unnec-
essary. However, the computation time for the
optimization tends to be large in comparison with
the system dynamics.

Since the simplified VTOL model is flat (Fliess
et al., 1995; Fliess et al., 1999), the optimization-
based MPC can be replaced by an algebraic gen-
eration of the trajectories. This is done in the
second approach, in which trajectory tracking is
also ensured by a NE-controller.

Note that a controller based on feedback lineariza-
tion can be computed for the simplified model.
Though this controller is very efficient at control-
ling the original model of the system, it is not ro-
bust to variations in some of the parameters that
are known to be uncertain in flying structures.

The paper is organized as follows. Section 2 briefly
revisits optimization-based MPC and NE-control.
The proposed two-time-scale control scheme is
detailed in Section 3. Section 4 presents the sim-
ulated operation of a VIT'OL structure. Finally,
conclusions are provided in Section 5.

2. PRELIMINARIES
2.1 Optimization-based MPC

Consider the nonlinear dynamic process:
& = F(z,u), x(0) = xo (1)

where the state x and the input u are vectors of
dimension n and m, respectively. xy represents the
initial conditions, and F' the process dynamics.

Predictive control of (1) is based on repeatedly
solving the following optimization problem:

min J=®(x(tp +T
e (z(te +T¥))

to+Ty
+ / L(z(7),u(r))dr (2)
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st. i=F(z,u), x(ty) = zm(tr) (3)
where ® is an arbitrary scalar function of the
states and L an arbitrary scalar function of
the states and the inputs. z,,(t) represents the
measured or estimated value of xz(t). The re-
optimization interval, ¢y — tx, is limited by the
performance of the available optimization tools.

2.2 Neighboring Extremals

Upon including the dynamic constraints of the
optimization problem in the cost function, the

augmented cost function, J, reads:

t+Ty
J=®(x(ty +Ty)) + / (H—\Ti)dt (4)

ty

where H = L + M'F(x,u), and A(t) is the n-
dimensional vector of adjoint states or Lagrange
multipliers for the system equations.

The first-order variation of .J is zero at the opti-
mum. For a variation Az(t) = x(t) — 2*(¢) of the
states of the system, minimizing the second-order
variation of J, A2J, with respect to Au = u — u*
represents a time-varying Linear Quadratic Reg-
ulator (LQR) problem for which a closed-form
solution is available (Bryson, 1999):

Au(t) = =K (t)Az(t) (5)
K=Hg, (Hu + F;S) (6)
S=-H,, +S(F,H;'H,, — F,) (7)
+(HyuHy, Fy = F7)S
+SF,H,'FTS + H, H ;' H,,
Sty +T¢) = P(x(ty + Ty)) (8)

Controller (5)-(8) is termed NE-controller.



3. TWO-TIME-SCALE CONTROL SCHEME

The repeated solution of (2)-(3) provides feedback
to the system. Yet, since the time necessary to
perform the optimization can be rather large
compared to the system dynamics, the feedback
provided by the re-optimization tends to be too
slow to guarantee performance and robustness.
Hence, it is proposed to add a fast feedback loop
in the form of a NE-controller. The resulting
control scheme is displayed in Figure 1. The NE-
controller operates in the fast loop at the sampling
frequency of the system, while the trajectory
is generated in the slow loop at a frequency
allowed by its computation. The generation of the
reference trajectories uycs(t) and x,er(t) can be
computed via optimization (e.g. MPC) or direct
system inversion (as is possible for example for flat
systems). Note that if the time-scale separation
between the two loops is sufficient, u,.f(t) can be
considered as a feedforward term for the fast loop.

Objectives
Yref Trajectory Xref
Generation [«
i slow loop
: (feedforward)
+y -
()u—> Plant —X>d)
+
A
+
fast loop
(feedback)
Au NE-controller | AX

-K(t)

Fig. 1. Scheme combining trajectory generation
(via optimization or system inversion) and
NE-control

3.1 Time-varying LQR

The NE-controller (5)-(8) can be numerically dif-
ficult to compute. However, its computation is
much easier if the optimization problem consists
of trajectory tracking. Indeed, for tracking the
trajectories urcf(t) and xyef(t), ® and L can be
chosen as:

1
b = §(I*$Tef)TP(:C*zref) (9)
L= %(ZE - xref)TQ(x - xref)
R 0

for which the the adjoints become:

A=—H = —FI'\— Q(z — x,ef) (11)
AMTy) = @o(Ty) =0 (12)

i.e. they are zero along the whole trajectory.
Hence, the NE-controller reduces to:

Au(t) = —K (t)Az(t) (13)
K=R'F'Ss (14)
S=-Q—SF,—FI'S+SF,R'FTS (15)
S(Ty) =P (16)

which can be viewed as a time-varying LQR.
Note that, if the local system dynamics are nearly
constant, the NE-controller is well approximated
by a LQR with a constant gain matrix K. In
contrast, if the system is strongly time varying,
it is necessary to compute the time varying NE-
controller (13)-(16).

4. APPLICATION TO A VTOL STRUCTURE
4.1 System dynamics

The simulated example is a VTOL structure. The
structure is made of four propellers mounted on
the four ends of an orthogonal cross. Each pro-
peller is motorized independently. The propeller
rotational velocities are opposed as follows (when
top-viewed, counted counterclockwise): propellers
1 and 3 are rotating counterclockwise, while pro-
pellers 2 and 4 are rotating clockwise. The angle
of attack (AoA) of the blades and the positions of
the propellers are fixed relative to the structure.
The VTOL is controlled through the four motor
torques. The states of the system are:

X=[zyzmmno&yiinngdp ppspa]

(17)
Variables [ac Y z] give the position of the center
of gravity G in [m] within the laboratory ref-
erential (e, ez, e3). Variables [771 2 (b] give the
angular attitude of the structure in [rad], with the
transformation from the laboratory referential to
the VTOL referential, (e1, es,e3) — (E1, Ea, E3),
being described by the matrix ®(ni,n2,¢) =
Rey () Rey (N2)Rey (01), where Re(a) is a rotation
of angle av around the basis vector e.

Variable pi is the speed of the propeller k in
[rad/s]. The model of the VTOL can be computed
through analytical mechanics. The aerodynamical
forces and torques generated by the propellers are
modeled using the standard squared velocity law.
The resulting model is rather complicated and will
not be explicited here. The reader is referred to
(Gros, 2005) for details. The model is nonlinear,
and its local dynamics are strongly time varying.

A simplified model can be computed by removing
certain non-linearities, which is well justified in
practice. Introducing the notations:
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vi=Ypn  va=> (=)
k=1 k=1
vs=p1 —p3 v =p3— pi
4
vs =Y pr
k=1

the simplified model can be written as:

@ sin(nz) 0
i | =Chrys | —cos(nz)sin(ni) | vi — | 0 [18)
z cos(nz2)cos(n1) g
b=Cyvy (19)
1

= Cysin v
m 07171008(772)2+C7271( asin(n2)vz

+ Csdcos(nz)(sin(¢)vs + cos(¢)va)

— I cos(12)7jav5) (20)
ija = Oy, (—cos(¢)vs + sin(d)vs

+ Ifycos(n2) i vs) (21)
Vg = Up k=1,..,4 (22)

with the constants

Cs

Ms 4+ 4m
Cy= Ca

AL + 4md? + I3,
Cy = —Iy; + I3 — Al + 41§ — 2md® + 4mh?
C2 = I3 + 45 + 4md’
o Cyd

AT + 2md? + Amh? + 13

C:nyz =

The inputs ug, £ = 1...4, do not represent the
physical inputs (the motor torques My ), but are
related to them by invertible algebraic relation-
ships. The parameter Cy is the aerodynamical
coefficient for the sustentation of the propellers,
Cq is the aerodynamical drag coefficient of the
propellers. The parameter M5 is the mass of the
main body, without the propellers, m is the mass
of a propeller. Parameters h and d are the hor-
izontal and vertical distances, respectively, from
the center of gravity of the main structure to the
centers of the propellers. Parameter I3, is the
inertia of the main body (without the propellers)
along the vertical axis, Ig is the inertia along the
two secondary axes. Parameter [ 1‘3[ is the inertia
of a propeller along its vertical axis, while I g‘ is
the inertia along the two secondary axes. The
inertias of the propellers along their horizontal
axis are considered identical. This assumption is
reasonable since, as the rotation speeds of the pro-
pellers are high, the propellers can be considered
as discs. The numerical values of the parameters
used in the simulations are given in Table 1. They

do not correspond to any particular real VTOL
structure, yet they are realistic.

Cs | 3.64x107% | Ns2
Cd | 1.26 x 107% | Nms?
Ms | 0.5 kg

m 2.5 x 1072 kg

h 0.03 m

d 0.3 m
I3, | 181 x107* | Nms?
I2 | 96 x107* | Nms?
I]gj 6.26 x 1076 | Nms?
I 1.25 x 1079 | Nms?

S
Table 1. Model parameters

4.2 Control problem

The control problem is of the tracking type: the
VTOL structure must be driven smoothly from
some initial configuration to another predefined
configuration. A translation from the position
(x = 0[m],y = 0[m],z = 0[m],¢ = 0[rad]) to
the position (x = 1[m],y = 1[m],z = 1[m],¢ =
27 [rad]) will be considered. The speeds and accel-
erations are zero initially as well at the final time
Ty = 4]s]. The problem is here unconstrained.
The various controllers are computed using the
simplified model, while the simulations are done
with the original model. Perturbations are intro-
duced in the aerodynamical parameters Cs and Cy
to represent the uncertainty resulting from self-
induced turbulences and surface effects: O}, Cé,
C2, Cﬁ are perturbed +50 percent and C2, Cg,
C4, C3 —50 percent, Cg, C* being the aerody-
namical coefficients of propeller k.

4.8 Control based on feedback linearization

Since the simplified model is flat, with the flat
outputs being (z,y, z, ¢), it is possible to compute
a controller based on feedback linearization (Fliess
et al., 1995; Fliess et al., 1999). However, the
resulting controller was found to lack robustness
with respect to the uncertain parameters Cy and

Ca.

4.4 Control based on MPC

With no parametric uncertainty in Cys and Cy,
the MPC scheme moves nicely to the desired state
setpoints despite the fact that the inputs are com-
puted based on the simplified model. However,
MPC struggles when the parametric uncertainty
exceeds 10 percent on the aerodynamical coeffi-
cient. Figure 2 shows the control performance for
a 10 percent perturbation, the perturbation being
applied to the four propellers as indicated in Sub-
section 4.2. A sampling time of 0.1[s] is used.
The control is rather slow and exhibits a large
overshoot.
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Fig. 2. MPC control performance
4.5 Control based on MPC + NE-controller

same inputs (u and @, respectively), R has to be
redefined for the NE-controller computation. The
following weights are chosen: 10 for the states z,
y, z, ¢ and 0.5 for & and y . The other states
are not weighted. Though these weights result in
a slightly better tracking performance than the
weights given by @ p, they are not crucial to the
efficiency of the fast loop.

This control scheme exhibits a nice behavior as
shown in Figure 3. No re-optimization is necessary
in this simulation due to the robustness provided
by the NE-controller in the fast loop. However,
since the computation time needed to solve the op-
timization problem largely exceeds the final time,
this control scheme can hardly be an option in
practice, i.e. when re-optimization might become
necessary.

Next, the control scheme presented in Section 3
is applied to the VTOL structure. MPC is used
in the slow loop and a NE-controller in the fast
loop. The optimization in MPC is performed using
a modified version of the simplified model of the
VTOL. The cost function is chosen quadratic:

T
J= % /0 f [(j - ESP)TQ(E - jsz)) + QTR@]dt

with Z), the state setpoints and u = [ul Ug U3 Uy } T,

where

U3 = sin(¢)vs + cos(p)vy V3 =1u3z  (23)
vy = —cos()vs + sin(P)vy 1 u
and 7= [ X(1:12) vi vy 03 04
This change of variables removes the coupling
between the states and allows the optimization al-
gorithm to perform much better. The correspond-
ing reference torques and states trajectories for
the original model can be computed algebraically
from T and u. The weighting matrices R and @
are chosen to obtain the desired dynamics. Here,
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they are chosen diagonal, with the diagonal terms
Rp and Qp given as:

Rp=10""-[1.8-107% 0.1058 28.125 27.38]
Qp(1:8)=10"-[1151050.110.50.45]
Qp(9:16)=10%-[0.50.505050000]

The computation of the NE-controller on the ba-
sis of the modified simplified model (i.e. the one
used to compute Uref(t) and Z,er(t)) leads to ro-
bustness problems (as the resulting torques would
depend on the uncertain parameters). Hence, the
computation is based on the simplified model,
i.e. without the modification introduced in (23)-
(24). The fast-loop controller is described in Sub-
section 3.1. Since the two models do not use the

o
(
o
°
5]
o kB N w » O o

0 2 4 0 2 4 0 2 4

Fig. 4. Control based on system inversion + NE-
controller (reference trajectories: dashed line,
system trajectories: plain line)

4.6 Control based on system inversion + NE-controller

The flatness property of the simplified model
allows generating the reference inputs and states
algebraically, which reduces the computation time
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Fig. 5. Gains of the NE-controller for the flatness-
based trajectory generation

significantly. The NE-controller in the fast loop
ensures good tracking of the state references. The
NE-controller is the same as in Sub-section 4.5.

This control scheme also exhibits a nice behavior
as shown in Figure 4. The reference input and
state trajectories are parametrized using poly-
nomials. They are generated once for the whole
trajectory, and no re-calculation is needed. The
computation time for the flatness-based trajectory
generation is fairly low. Figure 5 displays the
gains of the NE-controller. Since the gains are
strongly time-varying, the NE-controller cannot
be approximated by a LQR.

5. CONCLUSION

This paper has proposed a two-time-scale control
scheme that uses repeated trajectory generation
in a slow loop and time-varying linear feedback
based on the neighboring-extremal approach in
a faster loop. The slow loop provides reasonable
reference trajectories, while the fast loop ensures
robustness. Trajectory generation has used two
approaches: (i) optimization-based MPC, and (ii)
flatness-based system inversion. Both approaches
give good results, but the latter is significantly
faster.

The proposed approaches as well as feedback-
linearization and standard MPC have been used
in simulation to control a VTOL flying structure.
Though the simplified model of the structure is
flat, control based on feedback linearization is
not appropriate because of its lack of robustness
with respect to the model uncertainties typically
encountered in flying structures. Standard MPC
requires a high re-optimization frequency and, in
addition, cannot accommodate large model un-
certainties. In contrast, the proposed two-time-
scale control scheme is so robust that it does
not require re-calculation of the reference trajec-
tories. The optimization-based trajectory genera-
tion performs well, but is slow in comparison with

the VTOL dynamics. The flatness-based approach
appears to be sufficiently fast, and will be used
for experimental implementation on a laboratory-
scale VIT'OL structure, for which re-generation of
the reference trajectories might be necessary.

Future work will also investigate the stability and
robustness issues of the proposed two-time-scale
control scheme.
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