1

LCA-REPORT-2006-001
available from http://infoscience.epfl.ch

A Unified Framework for Max-Min and Min-Max
Fairness with Applications

Bozidar Radunov and Jean-Yves Le Boudec
bozi dar. radunovi c@pfl.ch, jean-yves. | eboudec@pfl.ch

EPFL, CH-1015 Lausanne, Switzerlahd
January 31, 2006

Abstract

Max-min fairness is widely used in various areas of netwuagki In every case where it is
used, there is a proof of existence and one or several digwifor computing the max-min fair
allocation; in most, but not all cases, they are based on ¢tiemof bottlenecks. In spite of
this wide applicability, there are still examples, arisinghe context of wireless or peer-to-peer
networks, where the existing theories do not seem to appbctlly. In this paper, we give a
unifying treatment of max-min fairness, which encompasgksxisting results in a simplifying
framework, and extend its applicability to new examplegsti-iwe observe that the existence of
max-min fairness is actually a geometric property of theaddeasible allocations (uniqueness
always holds). There exist sets on which max-min fairness dmt exist, and we describe a large
class of sets on which a max-min fair allocation does exikis €lass contains, but is not limited
to the compact, convex sets Bf¥. Second, we give a general purpose centralized algorithm,
called Max-min Programming, for computing the max-min fallocation in all cases where it
exists (whether the set of feasible allocations is in ouslar not). Its complexity is of the order
of N linear programming steps iR, in the case where the feasible set is defined by linear
constraints. We show that, if the set of feasible allocatibas the free-disposal property, then
Max-min Programming reduces to a simpler algorithm, calMater Filling, whose complexity is
much lower. Free disposal corresponds to the cases whetdenbok argument can be made, and
Water Filling is the general form of all previously known tetized algorithms for such cases.
Our derivations are based on the relation between max-nmmefss and leximin ordering. All our
results apply mutatis mutandis to min-max fairness. Oultegpply to weighted, unweighted
and util-max-min and min-max fairness. Distributed alfjoris for the computation of max-min
fair allocations are outside the scope of this paper.

Introduction

1.1 Max-min Fairness

Max-min fairness is a simple, well-recognized approachefing fairness in networks [6]; it aims at
allocating as much as possible to users with low rates, dride same time, not unnecessarily wasting

*The work presented in this paper was supported (in part) @\Ntitional Competence Center in Research on Mobile

Information and Communication Systems (NCCR-MICS), a eestipported by the Swiss National Science Foundation
under grant number 5005-67322.


leboudec
Text Box
LCA-REPORT-2006-001
available from http://infoscience.epfl.ch



resources (see Section 2.1 for a formal definition). It wasdua window flow control protocols
[8], then became very popular in the context of bandwidthrislggpolicies for ABR service in ATM
networks [3]. It is now widely used in various areas of netdrg [27, 29, 28, 13, 10, 7, 19, 16, 8, 1].

One of the simplest max-min fairness examples, given ing&jingle-path rate allocation. Suppose
we have a network consisting of links with fixed capacities] a set of source destination pairs that
communicate over a single path each, and with fixed routinige groblem is to allocate a rate to
each source-destination pair, while keeping the rate oh kak below capacity. Here, we call a rate
allocation max-min fair if one cannot increase the rate ofoa flvithout decreasing the rate of an
already smaller flow. A set of feasible rate allocations fairaple two source example is given in
Figure 1. A definition dual to a max-min fair allocation is mimax fair allocation, and is used in the
context of workload distribution, where the goal is to spraayiven workload evenly to all the parties
(see [15]) and where rates have to be allocated to availaiie &s evenly as possible.

1.2 Microeconomic Approaches to Fairness

Microeconomic theories of social welfare functions andalaaptima discuss a fair choice of alterna-
tives (such as goods distribution or policy making) [2]. E@ossible alternative is assigned a utility,
that represents its value to each individual in the systensoéial welfare function is a way to ag-
gregate individual utilities into a social utility. The amial choice of the alternative is the one that
maximizes the social welfare function [2].

There are numerous ways to define social welfare functions.i®a maximin or Rawlsian social
welfare function [22] that maximizes the utility of the woisT individual. It has been widely used in
the design of communication systems (see for example [18]).

The main problem of the maximin social welfare function iattthe optimal alternative is not
necessarily Pareto optimal. In other words, starting frbe maximin optimal alternative one can
increase the utility of one individual without decreasinjties of the others, and this is clearly not a
desirable property of an efficient alternative.

A leximin social welfare ordering is a refinement of the maixirsocial welfare function [5, 4]. It
is based on the notion of theximin ordering one vector is said to be leximin larger or equal than the
other if its ordered permutation is lexicographically krg@r equal to the ordered permutation of the
other vector (a precise definition is given in Definition 4 iec8on 2.2). The leximin social welfare
optimum is always Pareto optimal [2].

The fairness criteria in networking are based on findingmfgocial welfare theory. Max-min
fairness is closely related to leximin ordering. We disciss issue in depth in Section 2.2. Other
concepts of fairness, like proportional fairness [9], ds® dased on social welfare theory. We discuss
them in more detail in Section 2.4.

Another important concept from microeconomics used inghjger is thdree disposal propertyin
economics, itis defined as the right of each user to dispoae afbitrary amount of owned commodi-
ties [2], or alternatively, to consume fewer resources tharimally allowed. The formal definition is
given in Definition 6 in Section 3.2.

1.3 Bottleneck and Water-Filling

Most of the existing works on max-min fairness rely on thaarbf bottleneck link. Referring again
to the single-path rate allocation example given in Figurevd say that a link is a bottleneck for a
given flow if the flow uses the link, if the link is fully utilizk and if the flow has the maximal rate
among all the flows that use the link. It is shown in [6] for tHeae example that if each flow has



T2

w = - - m ===
(3 1] SR

Figure 1:An example of a network with its feasible rate set, and max-min allocation obtained by water-
filling. On the left, a network of 3 links is given. Flow z; connects S; and D and passes over links 1
and 3, and flow x5 connects S; and D and traverses links 2 and 3. The set of feasible rates (x1, x2)
is depicted by the inequalities: 0 < x1 < ¢1, 0 < 29 < ¢ and x1 + z2 < ¢3, and it is given on the right
(c1 = 7,c9 = 3,c3 = 8). The water-filling, as explained in [6], is depicted by the bold arrow: first, rates
on both flows are increased, until flow x5 hits the limit 2o = 3. Then, x5 is fixed to 3, and z; is further
increased until we reach the equality z; + x2 = 8. The max-min fair rate allocation is (5, 3).

a bottleneck link, then the rate allocation is max-min fdinis finding, which we call the bottleneck
argument, is often used to prove the existence of max-mindas.

The most widely used algorithm for obtaining max-min fagsés thevater-filling algorithm (WF)
[6]. The principles of WF are the following: rates of all flowse increased at the same pace, until
one or more links are saturated. The rates of flows passingsaterated links are then frozen, and
the other flows continue to increase rates. The algorithrepsated until all rates are frozen. A more
precise description of WF algorithm is given in Section 3t2s proven in [6] that the output of WF,
applied on a wired network, yields max-min fair allocation.

A simple example of WF in two dimensions on a wired networkwgihgle-path routing is given in
Figure 1. We see in the example that although WF, as defind,irs[related to the network topology,
max-min fair allocation itself is solely a property of thd séfeasible rates.

An extension of this scenario is introduced, for examplg18] and [28]. Each flow is separately
guaranteed a minimal rate. The algorithm used in [13] andi fi@8computing the max-min fair rate
allocation is a modified WF. Specifically, all rates are sehtr minimal guaranteed values, and only
the lowest rates are increased. A simple 2-dimensional pbeawith an illustration of WF is given on
the left of Figure 2.

Max-min fairness for single-rate multicast sessions isefin [10]. This is generalized to multi-
rate multicast sessions in [7]. Rates are again upper-lealibg links’ capacities, and here we are
interested in max-min fair allocation of receivers ratesse of feasible allocations is linearly con-
strained, and a WF approach can be used. The geometric shtpefeasible set is essentially the
same as in single-path routing.

The aforementioned scenarios have in common that the lipedrthe constraints defining the
feasible set. In [29], a single-path routing scenario issadered, and each source is assigned a utility,
which is an increasing and concave function of its rate.elmdtof searching for a max-min fair rate
allocation, the authors of [29] look for max-min fair utyliallocation. This approach is generalized in
[7], where a max-min fair utility allocation is consideredthe context of a multicast network. Here,
the authors only required that a utility function be a slyieghcreasing but not necessarily concave
function of rate, hence the feasible set is not necessanityex. A simple 2-dimensional example is
given in the right hand side of Figure 2. The WF algorithm carubed in this case as well.



X9 UQ

N
'3
YQ—>
v

25 49 U

Figure 2: More examples of feasible rate sets. We consider again the topology given on the left of
Figure 1. We first assume there are minimum rates guaranteed, m; = 0.5 and my = 1, for flows x; and
o respectively. The feasible set for this case is depicted on the left. The water-filling, as explained
in [13, 28], is represented with the bold arrow: we start by setting both flows on their minimal values
(z1 = my,x2 = my). We start by increasing the smaller rate, =1, until we reach z; = 2o = 1. The
rest is the same as in the example in Figure 1. On the right we consider utility max-min fairness,
presented in [29, 7]. The network is the same as in Figure 1, and we assume that the utility function
is U(x) = 2. The set of feasible utilities is depicted on the right. It is a non-convex set. The max-min
fair utility allocation can be obtained by water-filling, similarly as in Figure 1: utilities on both flows are
increased, until flow x5 hits the limit x5 = 3. Then, x- is frozen, and z; is further increased until we
reach the equality x; + 2o = 8. The max-min fair utility allocation is (25,9) which corresponds to the
rate allocation (5, 3).

1.4 When Bottleneck and Water-Filling Become Less Obvious

It is not always obvious how to generalize the notion of albo#ck link and the water-filling approach
to an arbitrary problem. To see why, consider a point-toypoiulti-path routing scenario, where, to
our knowledge, max-min fairness was not studied before. & &t the same set-up as above, but
now allow for multiple paths to be used by a single sourcehdason pair. The end-to-end rate of
communication between a source and a destination is eqtla sum of the rates over all used paths.
An example is given in Figure 3: when node 1 talks to node 4aitdmit using the direct path over
link 1-4 and in parallel it can relay through node 3. The emend rate of communication between 1
and 4 equals to the sum of rates over paths 1-4 and 1-3-4.

We are interested in a max-min fair rate allocation of enéfid source-destination rates. In other
words, an end-to-end source-destination rate allocasiomaix-min fair if one cannot increase the end-
to-end rate of a source-destination pair without decregtbia rate of some other pair, which is already
smaller.

Consider again the example in Figure 3, and assume thatledl in the example have capacity 1.
Then, by increasing all the rates at the same pace, we wd fees of all paths equal to 1/2 when link
3-4 saturates. Now, if we continue increasing the rate oathr p-4, the rate of source-destination pair
1 will be higher than the rate of source destination 2, and pe8-4 will loose its bottleneck since it is
no longer the biggest end-to-end flow that uses 3-4. If we ghane definition of the bottleneck, and
instead of taking the biggest end-to-end flow, we considep#th with the highest rate, we obtain the
max-min fair path rate allocation that differs from the éneend max-min fair rate allocation.

A first question that arises is how to define a bottleneck, siiahthe water-filling algorithm finds
max-min fair end-to-end rate allocation, if it is possibleadl. Also, it is not clear if for a given
definition of a bottleneck we can still claim that if each ph#s a bottleneck, the allocation is max-
min fair. Finally, we do not even know, using the existingstaf the art, if the max-min fair end-to-end
rate allocation exists on an arbitrary multi-path network.

This example can be solved by observing that the max-mirafeication depends only on the set
of feasible rates. Consider again the example in Figuret3 Aessume that all links have unit capacity.



Sl 1 A

Dy, Dy
So ’ ) 52 S D_i7D2

v
[~]
(]

o

2 c=1 c=2

Figure 3: A simple multi-path example. Left: S1 sends to D1 over two paths, 1-3-4 and 1-4, while
S2 sends to D2 over a single path 2-3-4. Center: the set of feasible rates. Right: the corresponding
virtual single path problem.

X2

Ss o

Figure 4: When water-filling does not work - consider the network topology on the left (c; = 7,¢co =
3, c3 = 8). Suppose that node D receives parts of the same stream from both S; and .Sy, through flows
x1 and x2, and suppose it needs a minimal total rate of z1 + x5 > 7. We want to minimize loads of
servers S; and S,, and we are interested in min-max fair allocation of (z1, z2). The feasible rates set
is given on the right. Min-max fair allocation exists, and it is (4, 3).

Call z; = y; + y» the rate of sourcé, andzx, the rate of source, wherey; is the rate of sourcé
on pathl — 4, andy, on pathl — 3 — 4. The set of feasible rates is the setof > 0,z, > 0) such
that there exist slack variables > 0,9, > O with y; < 1,y + 2o < 1 andx; = y; + y2. This

is animplicit definition, which can be made explicit by eliminating theckl@ariables; this gives the
conditionsz; < 1,727 + x5 < 2 (Figure 3, center). The set is convex, with a linear boundasyin
Figure 1, left. We can re-interpret the original multi-pgitoblem as a virtual single path problem
(Figure 3, right), and apply the existing WF algorithms. @a virtual single-path problem we can
define bottlenecks in a usual way. Note however that the qarafebottleneck in the virtual single
path problem has lost its physical interpretation on thgioal problem.

1.5 When Bottleneck and Water-Filling Do Not Work

Unfortunately, the approach with a virtual bottleneck donesalways work. Consider the following
workload distribution example: servers in a peer-to-peswork send data to a client; every client
receives data from multiple servers, and has a guarantegdhalirate of reception. Each flow from
a server to a client is constrained by link capacities. Ol goto equalize load on the servers while
satisfying the capacity constraints.

A natural definition of fairness in this setting is min-maxess, where we try to give the least
possible work to the most loaded server. We say that a loaldeosetrvers is min-max fair if we cannot
decrease a load on a server without increasing a load of ansénver that already has a higher load.
A 2-dimensional example is given and explained in Figure ée ©an verify that is not possible to
define a virtual bottleneck in this case. We discuss this @kaimn more detail in Section 3.2.2 and
Section 4.2.

A similar, but simpler, example is given in [15], which fo@sson finding a leximax minimal



allocation (we show in Section 3 that the leximax minimabedition obtained in [15] is in fact min-
max fair). Its complexity is of the order af polynomial steps ifR?, in the case where the feasible
set is defined by linear constraints.

In Section 4.3 we present another example where watergfilioes not work. We consider the
lifetime of nodes in a sensor network, inspired by the exanmroduced in [14], which studied the
minimum lifetime. The lifetime of a node is a time until a nogkhausts its battery, and it depends on
the routing policy of a network. Unlike in [14], we study theuting strategy that achieves the min-
max fair allocation of lifetimes of nodes. We characterize $et of lifetimes that can be achieved with
any possible routing strategy, and we show that the min-raguifetime allocation exists. However,
as we also show, it is not possible to obtain it by water-fijlin

1.6 Our Findings

Our first finding is on the existence of max-min fairness. Weed@ large class of continuous sets
on which a max-min fair allocation does exist, and we thecaly prove the existence. This class
contains, but is not limited to the all compact, convex stdsé an arbitrary dimension Euclidean

spaceR” . We also illustrate in a few examples that there are sets achwhax-min fairness does not

exist, thus that our result is not trivial.

Our second finding is on algorithms to locate the max-mind#ocation. In Section 3, we give
a general purpose, centralized algorithm, caNMek-min Programming (MR)and prove that it finds
the max-min fair allocation in all cases where it exists. dtsnplexity is of the order ofV linear
programming steps iR”, in general, whenever the feasible set is defined by lineastcaints.

The third finding is on the relation between the general MPratigm and the existing WF algo-
rithm. We recall the definition of the free disposal propentygl show that, whenever it holds, Max-min
programming (MP) degenerates to the simpler Water-fillivgr| algorithm (originally defined in [6]),
whose complexity is much lower. The free-disposal propeotyesponds to cases where a bottleneck
argument can be made, all previously known centralizedribgos for such cases rely on the water-
filling approach. We note that WF requires the feasible sbetgiven in explicit form, unlike MP, and
we discuss the case of an implicit feasible set with the flisposal property.

We use a novel approach to analyze properties of max-minefss. Instead of considering a
specific networking problem with an underlying network ttmgy, we focus only on the feasible rate
sets. Therefore, our framework does not depend on a spewfibgm; it is general and it unifies the
existing approaches that analyze max-min fairness.

In Section 4 we show applications of the results for threevagking examples. We give specific,
numerical examples where max-min fair allocation existg,the feasible sets do not have the free-
disposal property, hence a classical water-filling caneaided. We show in these examples how MP
does find max-min fair allocation even when the free-dispdeas not hold. This way, we verify
that our framework unifies previous results, and extendsipdicability of max-min fairness to new
scenarios.

All our results are given for max-min fairness; they applytatis mutandis to min-max fairness.
They are valid for weighted and unweighted max-min and maxffairness, using the transformation
given in Section 2.1. Distributed algorithms for the congtiatin of max-min fair allocations [8, 1] are
left outside the scope of this paper.

1.7 Organization of The Paper

In Section 2 we define our framework (max-min and min-maxnfss in/N continuous variables).
We mention a number of elementary results, such as the umggeand the reduction of weighted



max-min fairness to the unweighted case. We recall the defiof leximin ordering that we use in a
latter analysis. We prove our first main result about theterise of max-min fairness. At the end of
the section we also show that max-min fairness is a limitagpeoof utility fairness whenever a feasible
set is compact.

In Section 3, we give the definitions of the two analyzed atgors: Max-min Programming (MP)
and Water-filling (WF), and we discuss the other two main figdi In Section 4 we illustrate our
framework on three networking examples. We conclude ini@e& Proofs are in the appendix.

2 Max-Min and Min-Max Fairness in Euclidean Spaces

In this section we provide a precise definition of max-min amd-max fairness and give results on
their existence.

2.1 Definitions and Uniqueness

Consider a set’ ¢ R". We define the max-min and min-max fair vectors with respectet X’ as
follows:

Definition 1 [6] A vector 7 is “max-min fair on setX” if and only if
Vye X)3se{l,..,.Nh)ys>zs = (Fe{l,. ,.N})y <z <z (1)

i.e. increasing some componentmust be at the expense of decreasing some already smallgual e
component;.

Definition 2 A vectorZ is “min-max fair on sett”™” if and only if
VMye X)3se{l,... N} ys<zs, = (Fte{l,..N})y >z >x 2

i.e. decreasing some componentmust be at the expense of increasing some already larger@omp
nentz;.

It is easy to verify that iff is a min-max fair vector o', then—2 is max-min fair on—X" and
vice versa. If we show properties of max-min fairness on-s&t the same properties will hold for
min-max fairness on set. Thus, in the remainder of the paper, we give theoreticalltesnly for
max-min fairness.

Uniqueness of max-min fairness is assured by the follownogasition:

Proposition 1 [6] If a max-min fair vector exists on a sét, then it is unique.

The proof of the proposition is given in [6].

Weighted min-max fairness is a classical variation of maw-fairness, defined as follows. Given
some positive constants; (called the “weights”), a vector is “weighted-max-min fair” on set’, if
and only if increasing one componentmust be at the expense of decreasing some other component
x; such thatr;/w, < xs/w, [6]. This is generalized in [7], which introduces the cortcep“util
max-min fairness”: givemV increasing functions; : R — R, interpreted as utility functions, a vector
Z is “util-max-min fair” on sett’ if and only if increasing one component must be at the expense of
decreasing some other componensuch that, (x;) < ¢,(z;) (thisis also called “weighted max-min
fairness” in [19]). Consider the mappirgdefined by

(x17”'>xN)_><¢1(x1)7"'7¢N(xN)) (3)

It follows immediately that a vectar is util-max-min fair on set’” if and only if ¢(Z) is max-min fair
on the setp(X'), the case of weighted max-min fairness corresponding to;) = z;/w;. Thus, we
now restrict our attention to unweighted max-min fairness.

7



T

Figure 5:Examples of 2-dimensional sets that do not have max-min fair allocation. Point (1,3) is not
max-min fair in the example on the left since there exists point (3, 1) that contradicts with definition
Definition 1. Both points (1,3) and (3, 1) are leximin maximal in this example. In the example on the
right, point points (3, 1) is the single leximin maximal point. Still, it is not the max-min fair point. Note
that there exist no real networking example we are aware of that has these feasible rate sets — these
sets are only artificial examples that illustrate properties of leximin ordering.

2.2 Max-Min Fairness and Leximin Ordering

In the rest of our paper we will extensively use leximin ondgya concept we borrow from economics,
and which we now recall. Let us define the “order mappifg”: RY — R as the mapping that
sortsz in non-decreasing order, that i€z, - - -, ) = (za), -+, Tw)), With 24y < 29) -+ < ()
and for alli, z(; is one of ther;s. Let us also define the lexicographic ordering of vectord’iny

lex ) X lex i X lex
¥ >y ifandonlyif (3i)z; >y, and (V5 < i) x; = y;. We also say that > yifand only if 7 > ¢
or ¥ = ¢. This latter relation is a total order d".

lex
Definition 3 [2] Vector ¥ is leximin largerthan or equal tay if 7 (%) > 7 (¥).

lex
Definition 4 [2] Vector ¥ € X isleximin maximalon a setY if for all ¥ € X we haveT (z) > 7 (v).
Note that a leximin maximum is not necessarily unique. Seerei5 on the left for a counter-
example.

Proposition 2 [24] Any compact subset &"™ has a leximin maximal vector.
It has been observed in [29, 13, 7] that a max-min fair aliocais also leximin maximal, for the
feasible sets defined in these papers. It is generalizedadogtnary feasible set in [24], as follows.

Proposition 3 [24] If a max-min fair vector exists on a séf, then it is the unique leximin maximal
vector onk’.

Thus, the existence of a max-min fair vector implies the uaitggss of a leximin maximum. The
converse is not true: see Figure 5, right, for an example et avgh unique leximin maximal vector
which is not max-min achievable. [24] defines a weaker varsiomax-min fairness, “maximal fair-
ness”; it corresponds to the notion of leximin maximal vech@nce it is not unique, and exists on a
larger class of feasible sets. We leave this weaker versitside the scope of this paper.

It is shown in [2] that if a vector is leximin maximal, it is ald?areto optimal. Therefore, from
Proposition 3 it follows that the max-min fair vector, if ists, is Pareto optimal. The converse is not
necessarily true.



2.3 Existence and Max-Min Achievable Sets

As already mentioned, a number of papers showed the exéstdnoax-min fair allocation in many
cases, using different methods. We give here a generalized fhat holds on a larger class of con-
tinuous sets that incorporates, but is not limited to corsets. This class of continuous sets includes
the feasible sets of all the networking applications we arara of. Note that a max-min fair vector
does not exist on all feasible sets, even sets that are compadconnected. Simple counter-examples
are given in Figure 5. However, these counter-examplesard-brafted and do not correspond to any
networking scenario. In the reminder of this section we giweifficient condition for the existence of
a max-min vector.

Definition 5 A setX’ is max-min achievable if there exists a max-min fair vectoAod

Theorem 1 Consider a mapping defined as in Equation 3. Assume thats increasing and contin-
uous for alli. If the setX’ is convex and compact, thexi.X’) is max-min achievable.

The proof is in the appendix. As a special case, obtainedthlipdes;(x) = =, we conclude that
all convex and compact sets are max-min achievable. Takifig = =/w;, we also conclude that
weighted max-min fairness exists on all compact, convex $dbre generally, util-max-min fairness
exists on all compact, convex sets, if the utility functi@me continuous (and increasing).

Note that ifZ* is max-min fair onY andy* is max-min fair ong(X'), then in general™* # ¢(*).
To see this, consider an example of a wired network with alsiliigk of capacityc, with two flows,
x1 andzx, passing over the link. The max-min fair rate allocation iis ttase ist; = 2, = ¢/2. Let
us next define the utility functiong;(x) = x/w;, as above, and let; = 1, w, = 2. We then have
u; = x1,uy = x9/2, and the max-min fair utility allocation is going to he = u, = ¢/3 and the
resulting rate allocation is going to he = ¢/3, xo = 2¢/3, which differs from the max-min fair rate
allocation in the first case.

In [29], the utility functionsg; are arbitrary, continuous, increasing and concave funsti®ith
these assumptions, the g¢tt’) is also convex and compact. Note that in general, thouglsetye ')
used in Theorem 1 is not necessarily convex. Examples withooovex sets are provided in [19] and

[71.

2.4 Max-min Fairness as A Limiting Case of Utility Fairness

As explained in Section 1.2, utility fairness is an anothapydar class of fairness objectives in net-
working, derived from social welfare theory. ¥ c RY is the set of feasible rate allocation,
andU; : R — R foralli € {1---N}, then utility fair rate allocation is the one that maximizes
Zf;l Ui(z;) overz € X. The best-known example of utility fairness is proportiofsérness [9],
whereU;(xz) = log(x). There exist many distributed algorithms for solving thevex optimization
problem of finding the utility fair rate allocation [12, 17].

It is known that no continuous utility function exists thaincrepresent leximin ordering [2], hence
we cannot directly use the existing utility-based algan#hto find a max-min fair vector. However, it
is shown in [12] that for wired networks with single-path tiog, and for a class of utility functions

defined as a ) fm 1
—m) lz=™ ifm
fml) = { log(x) ifm=1" “)

the utility fair rate allocation converges to max-min fameoasm goes to infinity. Therefore, by
choosing an appropriate, we can approach arbitrarily close to the max-min fair atan using the
existing algorithms [12, 17].



The above convergence property of max-min fair allocatsoshiown to hold, in [12], only in the
case of wired networks with single-path routing, and theopaf it heavily depends on the notion
of bottleneck. It is not known if the same result holds for abpiteary problem where max-min fair
allocation applies. We show here that it holds wheneverdhsible allocation set is convex.

Let f,, be a family of increasing, concave and differentiable fior defined orR™. Assume
that, for any fixed numbers andd,

. fm(z)
Ay = O ®)
m_An@ (6)

|
m—1>+oo f,’n(l' + 5)

The assumptions (5) and (6) are satisfied if for exanfplés defined as in (4).

Let us consider a convex s&tand letz™ be the utility-fair vector ont’, that is the unique vector
that maximize$_~ | f..(x;) The following theorem shows that a max-min fair vector isthdimiting
case of utility fair vector for the set of utilities we constted above:

Theorem 2 The set of utility-fair vectorg™ converges toward the max-min fair vectorragends to

+00.
The proof is in the appendix.

3 Max-Min Programming and Water-Filling

In the following section present the max-min programmindPjMlgorithm, which finds the max-min
fair vector on any feasible set, if it exists. We also defin@adition called a free-disposal property,
and show that, under that conditions, a commonly used Viiflteg: (WF) algorithm coincides with
the MP algorithm, and is guaranteed to find the max-min féarcakion.

3.1 The Max-Min Programming (MP) Algorithm

The idea of the MP algorithm is first to find the smallest congydrof the max-min fair vector, which
is done by maximizing the minimal coordinate. Once this iseldhe minimal coordinate is fixed,
and the dimension corresponding to the minimal coordireaternoved. This step is repeated until all
coordinates are fixed, and we show that a vector obtainectimway is indeed the max-min fair one.
A precise definition of the algorithm is given below.

1 letS°={1,. N}, X=X R'=Xandn=0
2. do

3. n=n+1

4.

ProblemM P™: maximizeT™ subject to:
(Vie S 1) z; >T"
for some 7€ A"t

5. letxr ={Ze x| (Vie S" VN, >T" (Fie S" V) a; >T"},

R={Fe x| (Vie S" )z, >T"}

and S"={ie{l,..,N}| (VX € X")x; > T"}
6. until S =10
7. return the only element iR"

The algorithm maximizes in each step the minimal coordioatie feasible vector, until all coordi-
nates are processed. Thh step of the algorithm is a minimization problem, calldd®”, whereX'™

10



represents the remaining search spatetepresents the direction of search, in terms of coordinates
that can be further increased, aRd is the set that will, in the end, contain a single rate allocathe
max-min fair one.

3.1.1 Proof of Correctness

The algorithm always terminatesAf is compact and max-min achievable, akid is reduced to one
single element, which is the required max-min fair vectsrsgproved in the following theorem:

Theorem 3 If X' is compact and max-min achievable, the above algorithmitextes and finds the
max-min fair vector ort’ in at most/N steps.

The proof is in the appendix. Note that the theorem requieed’do be compact but this usually
just a technical assumption since in most of the practicairgies the feasible sets are compact.

The algorithm presented in [15] for calculating the lexinmaiximal allocation is a particular im-
plementation of MP. In each step, this algorithm maximizes minimum rate of links, which is
exactly step 4 of the MP algorithm, tailored to the problemsidered. The overall complexity of the
algorithm in [15] is thus the same as the complexity of MP.c8ithe feasible set considered there
is compact convey, it follows from Theorem 1 and Proposi8dhat the leximax minimal allocation
obtained in [15] is in fact a min-max fair allocation.

3.1.2 Numerical Examples

In order to illustrate the behaviour of MP, we consider twm@ie examples. The first one is the
network from Figure 1. The set of feasible rates is

X ={(r1,22) |0 <2y 7,0 < 29 < 3,21 + 22 < 8}, (7)

and it is depicted on the right of Figure 1. We are looking fag imax-min fair rate allocation.

In the first step of the algorithm we han® = X, R° = X, S° = {1, 2}. By solving the linear pro-
gram in step 4, we obtaifi' = 3. We further haveX! = {(2,,3)|3 < z; <5}, R!' = {(21,3)|3 <
7 < 5},8% = {1}. Again by solving the linear program in step 4 we obtath= 5. Now we have
X2 =0,R*={(5,3)},5% = 0. The algorithm terminates and st contains only the max-min fair
rate allocation.

The second example we consider is the load distribution pl&from Figure 4. The set of feasible
rates is

X:{(l’l,l’g)‘ogxl§7,0§$2§3,7§$1+1’2§8}, (8)

and it is depicted on the right of Figure 4. We are looking fag tnin-max fair rate allocation on set
X, which is equivalent of finding max-min fair rate allocation set—X’, as discussed in Section 2.1.

In the first step of the algorithm we have’ = —x R’ = —X,S° = {—1,-2}. By solv-
ing the linear program in step 4 we obtdit = —4. We then havet! = {(—4,-3)},R! =
{(—4,-3)},S5° = 0. The algorithm terminates and sef contains a single allocation which. The
min-max fair rate allocation is thud, 3).

Note that when the max-min fair allocation does not exist, M not give one of the leximin
maximal points, as one might expect. To see this, consideeamples from Figure 5. In both
examples, in the first step of MP, we will ha¥é = 1 andS! = (), and the algorithm will returii1, 1)
as the optimal point. This point is neither leximin maxinrady Pareto optimal.

Before applying MP to a specific class of problems, it is tmgartant to verify, e.g. using results
from Section 2, that max-min fairness exists. This has tadmeanly once, since the existence of max-
min fairness depends on the nature of the problem. On theasgnonce the existence is verified, the

11



MP algorithm can be further applied on any instance of thélera and will always yield the correct
result.

3.2 The Water-Filling (WF) Algorithm

We now compare MP with the water-filling approach used intheitional setting [6]. We here present
a generalized version that includes minimal rate guaransesein [28].

We first introduce the concept of free disposal propertys tHefined in economics as the right of
each user to dispose of an arbitrary amount of owned comiasdg], or alternatively, to consume
fewer resources than maximally allowed. We then modifyiglgly, as follows. Calle; a unitary
vector(€;); = d;;.

Definition 6 We say that a set’ has the free-disposal property if (1) there exigtsith z; > m; for

all # € X and (2) for alli € {1, ..., N} and for all « such thatt — «¢é; > m, we haver — ae; € X.
Informally, free disposal applies to sets where each coatdiis independently lower-bounded,

and requires that we can always decrease a feasible vestn@ as we remain above the lower

bounds. We now describe the Water-Filling algorithm.

0. AssumeX is free-disposal

1. letS°={1,. . N}, X=X R°=Randn =0
2. do

3. n=n+1

4.

ProblemIV F™: maximizeT™ subject to:
(Vi e "1 z; = max(T", m;)

for some 7€ A"t
5. letxr ={Ze x| (Vie S" Vo, >T" (Fie S" ) a; >T"},
R={Fe X" | (Vie S" ), >T"}
and S"={ie{l,.. ,N}| (VX € X")x; > T"}
until S™ = ()
7. return the only element iA™

&

3.2.1 Equivalence of WF and MP

The following theorem demonstrates the equivalence of MIPVER on free-disposal sets.

Theorem 4 Let X be a max-min achievable set that satisfies the free-disjpospérty. Then, at every
stepn, the solutions to problemd F™ and M P™ are the same.

The proofis in the appendix. Thus, under the conditionsettieorem, WF terminates and returns
the same result as MP, namely the max-min fair vector if is&xi The theorem is actually stronger,
since the two algorithms provide the same result at evep $tewever, if the free-disposal property
does not hold, then WF may not compute the max-min fair aliona We refer to Section 3.2.2 for
such an example.

The examples previously mentioned of single path unicastirrg [6], multicast util-max-min
fairness [10, 7] and minimal rate guarantee [28, 13] all hdneefree-disposal property. Thus, the
water-filling algorithm can be used, as is done in all the noeetd references. In contrast, the load
distribution example [15] is not free-disposal, and all vea @o is use MP, as is done in [15] in a
specific example.

The multi-path routing example also has the free-disposgigrty, but the feasible set is defined
implicitly. We discuss the implications of this in the negtsion.

12



3.2.2 Numerical Examples

To illustrate the behaviour of WF, we consider again the sameeexamples as in Section 3.1.2. In
the first example, depicted in Figure 4, the feasible ratede=cribed by (7), has the free-disposal
property. It is easy to verify that sefst’},_;..3, {R'}i=1..3, {S'}i—1..3 are taking exactly the same
values as in the case of MP, described in Section 3.1.2. Bimiirms the findings of Theorem 4.

The second example we consider is the load distribution ple@rhepicted in Figure 4 and de-
scribed by (7). For this type of problem we cannot a prioriteetupper limits in7, as [13, 28], as
they are not universal (they would need to depend on givenarkttopology and are not known in
advance). Then, it is easy to verify that the linear programtep 4 (with minimization instead of
maximization since we are looking for min-max fairness) hasolution. Therefore, in this case, WF
cannot find the min-max fair rate allocation.

Note that the free-disposal property is a sufficient but noée@essary condition for MP to degen-
erate to WF. This becomes evident when considering agaiexéiple from Figure 4. Suppose that
c1 = 3,c, = 3,c3 = 4, and, in addition, the minimum rate constrainkis+ x» > 3. The feasible rate
set in this example has the same shape and orientation agureH, but it is translated to the left such
that it touches both; andx, axes. In this case, it is easy to verify that the set still dug#shave the
free-disposal property, since the shape and the orientafithe feasible set are the same. However
WEF finds the min-max allocation in a single step.

3.3 Complexity Of The Algorithms In Case Of Linear Constraints

Let us now assume that is ann-dimensional feasible set defined hylinear inequalities. Each of
the n steps of the MP algorithm is a linear programming problenmclethe overall complexity is
O(nLP(n,m)), whereLP(n,m) is the complexity of linear programming. The WF algorithreaal
hasn steps, each of complexity(m) (since in step 4 we have to find the maximum valugd'dhat
satisfies the equality in each of theinequalities, and take as the result the smallest of thése)ce
the complexity of WF i<D(nm). Linear programming has solutions of exponential compyeiri the
worst case, however in most practical cases there are @adutrith polynomial complexity.

Assume next that’ is defined implicitly, with an/-dimensional slack variable (for an example
scenario, see multi-path case on Figure 3). We can use MEhw¥orks on implicit sets, resulting
in complexityO(nLP(n,m)). If the set is free-disposal, we can also use WF, but we neédd@n
explicit characterization of the feasible set. In most sagading an explicit characterization of the
feasible set can be done in polynomial time. To see that,idenagain the example from Figure 3.
The slack variables represent rates of different pathsyedsewe are interested only in the end-to-
end rates. Finding a set of feasible end-to-end rates ivaeui to a well known problem of finding
maximum flows in a network [25] (see [15] for an example in tlegworking context). As shown
in [25], this is a problem of a polynomial complexity. Noteatht might be possible to construct
an implicitly defined feasible set that cannot be convertedrt explicit form in a polynomial time.
However, we are not aware of any existing example of such aAdetrther analysis is out of the scope
of our paper.

Once we have an explicit characterization, the remainingpexity of WF is still O(mn). In
practical applications, we are likely to be interested ipleitly finding the values of the slack vari-
ables at the max-min fair vector. Finding these values isegli program. Here, it is sufficient to make
the set explicit only once for a given problem. We concludd th many practical problems, it is likely
to be faster to make the set of constraints explicit and useatffer than MP.

13



4 Example Scenarios

In this section we provide examples that arise in a netwgrkiontext, which were not previously
studied, and to which our theory applies. The first exampldsdeith maximizing the life-time of
certain sensor network. The feasible set does have thelispesal property, hence both WF and MP
work. However, the goal of this example is to elucidate howdavert an implicit feasible set to an
explicit one, which is illustrated here with an example.

The second and the third examples are taken from problerhed¢bar in P2P and wireless sensor
networks, respectively. We show that in these two scendhnedeasible sets do not have the free-
disposal property. We illustrate on simple but detailed arioal examples that WF does not work,
whereas MP gives a correct result.

4.1 Minimum Energy Wireless Network

Our first novel example is the lifetime of a sensor networksuxee that we have a wireless sensor
network, where an arbitrary set of source nodes collect antunicate information to corresponding
destination nodes by relaying over intermediate nodesuisshat each node has an initial energy,
which decreases each time it transmits a message. Once dasdeplated its power, it cannot send
anything any more. Rather than analyzing the dynamics af#fféc, we consider the total amount of
information that can be conveyed over the network durintiféasme.

Consider a network with = {1--- N} nodes, and = {1--- L} links. The initial energy of node
n is E,. The energy needed to send one bit over lin&e,. There is a setof = {1---S5} source
destination pairs that communicate data. We denote Witkhe total amount of bits transferred over
the network during its lifetime by source-destination paif hose bits may be transferred over one of
p = {1--- P} different paths, and the number of bits transferred oven pas denoted witht,,. We
further seta,,; to 1 if a link [ contains node:, otherwise to 0, and,, to 1 if pathp contains linkl,
otherwise to 0.

In general, a feasible information allocation can be describy the following constraint set

X={X,: B> amer Y bpYp Xo=> dipYy)h,
l p p

SinceX is convey, it is also max-min achievable. It also has the-flisposal property so a max-min
fair allocation can be found by either WF or MP sintds not given explicitly.

A simple four node example is given in Figure 6. Soufiesends data to destinatian;, and
sourceS; sends data to destinatidm, (which happens to be the same noddg$. SourceS; sends
over two paths, a direct pattj, and patht’; over node 3. Sourcé, sends over one palty, over node
3. The initial energy of a node is F,,, and the cost of sending each bit over link e;.

For example, let us denote withy andY; the total number of bits node 1 transmits over links 1
and 2 during its lifetime, respectively. For each bit sergrdink 1 it will spende; joules of energy,
and for each bit sent over link 2 it will spenrd joules of energy. Hence, node 1 cannot violate the
following energy constraint; > e,Y; + e;Y3. Similarly, we can write constraints for other nodes.
We also have constraints on total traffic over a given linkc8iflowsY; andY; pass over link 1, total
traffic on both flows cannot be larger thafy. Putting all of them together, we obtain the following
set of constraints

Ey > eYi +eYs, 9)
E2 Z 63}/37 (10)
E; > ey (Ya+Y3), (11)

14



X2:' Efe,
e)XVL (efel) X1 =
E+ (e-e)leE

Xy

eX,=E X, + (6r8) X, =
S S, E+ ee)eE, D.. Dy
eX, (&) X,

Figure 6: Minimum energy networks: Left: a four node example, with two sources and two destina-
tions. Upper right: feasible set for the example on the left. Lower right: Single path routing problem
with the equivalent feasible set.

X2 = )/E’n (13)

whereX; is the total amount of information transferred frginto D;. We are looking for a max-min
fair allocation of information transferred.

To decrease the complexity of WF, we have to find an expli@ratterization of the feasible set,
hence we need to get rid of the slack variables and define reamist solely onX;, X,. To do this,
one can solve the max-flow min-cut problem, using e.g. augimgpath method [25], only for a flow
from S; to Dy, only for a flow from S, to D,, and jointly for both flows fromS; to D; and fromS;
andD,. In the specific example from Figure 6, assuming that> F5 ande; > e,, we can transform
the feasible set (9) - (13) into

X
62X1 + (61 — 62)X2

E3/62, (14)

<
S El + E3(€2 — 61)/64. (15)

as depicted in the upper right corner of Figure 6, and we catyaWF to find the max-min fair
allocation. The same approach can be extended straiglatfdrio an arbitrary network topology and
performed in polynomial time. We refer to section 3.3 forcdission. It is interesting to notice that
there exists a single-path routing problem with the samsiti&aset, shown in the lower right corner
of Figure 6, with link capacities that correspond to inegies (14) and (15). Therefore we can still
identify bottlenecks in the classical sense, although i@y tlo not have a clear physical interpretation
i.e., they correspond to a virtual notion of maximum cutshi@ max-flow min-cut algorithm.

The above model is an extension of the model presented in [d4]L4] they maximize only the
shortest lifetime, hence solving only P!. This is not useful in the case of large networks, where a
death of one node cannot be treated as a death of the netaelfk Also, the authors of [14] optimize
the lifetime given the traffic matrix, whereas we allow anitdoy traffic matrix and we optimize the
amount of information transferred. Thus, [14] is a speclecof our model presented here.

Our analysis is focused only on properties of the perforraanetric, and not on a specific re-
alization of an algorithm. Unlike [14], where a fully diditited algorithm is given, we only give a
centralized solution, and an implementation of a disteldytrotocol is out of scope and remains as a
future work.

15



4.2 Load Distribution In P2P Systems

Let us consider a peer-to-peer network, where severalrseca@ supply a single user with parts of a
single data stream (e.g. by using Tornado codes [11]). Tiee@eninimal rate a user needs to achieve,
and there is an upper bound on each flow given by a networkaggalnd link capacities.

Let & be the total loads on the serveikthe flows from the servers to clients the total traffic
received by clients; the capacities of links andh the minimum required rates of the flows. We can
then represent the feasible rate set as

X={7:(37.2)Aj<EBj=70Cj=27>m}, AB,C>0, (16)

whereA, B andC are arbitrary matrices defined by network topology and rauti

A simple example depicted in Figure 4. Cliehtreceives data from both servefsandS; and it
wants minimal guaranteed rate There is flowy,; going fromS; to D over links 1 and 3, and flow,
going fromS; to D over links 2 and 3. We have that the total egress traffis,aé x; = y;, and ofS,
is zo = 1. The total ingress traffic ab is z; = y; + y». We thus have the following matrices

10
A= 01,3:[10y0=[11y
D 0 1

that define the constraint set, visualized in Figure 4.

In a peer-to-peer scenario, each server is interested immzing its own load, hence it is natural
to look for the min-max fair vector on sét, which minimizes loads on highly loaded servers.

Since setY is convey, it is min-max achievable. Since it does not haedrre-disposal property
in general, WF is not applicable. This is shown in SectionZdn a simple example. Min-max
fair allocation can be found by means of the MP algorithm. sTikiillustrated on the example in
Section 3.1.2.

Note that this form of a feasible set is unique in that it idtroes both upper and lower bounds on
a sum of components af and, as such, is more general than the feasible sets in tive gbesented
examples, such as [15].

4.3 Maximum Lifetime Sensor Networks

In this section we consider an example motivated by [14, ZBjis example is somewhat similar to
the example in Section 4.1. However, Section 4.1 consideress networks where the underlying
physical interface eliminates intra-node interferenchictv holds only for a small class of physical
and MAC layers (i.e. a model of 802.11 where the interfereaadiminated by exclusions). In an
improved, more realistic physical layer model, a transiaisen one link provokes interference, which
decreases the rates of other links in a region. In this examplassume that the network is built on
the top of the ultra-wide band physical model described &).[2

Consider asetaf = {1--- N} nodes, some of which are sensors and some are sinks. We assume
sensors feed data to sinks over the network, and can do smbingadirectly, or relaying over other
sensors or sinks. When nodeends data to nodg it does so using some transmission powgrThe
signal attenuates while propagating through space, ardéved at! with power P, h,4, Whereh,, is
an arbitrary positive number, referred to as the attenndteiweens andd.

Receiverd tries to decode the information sent byin presence of noise and interference. If
N denotes the white background noise, than the total intamfer experienced by D i = N +
Z#S P;h;y. The maximum rate of informatiothcan achieve is then [26]

Pshsd
N + Zi;ﬁs chzd

{L'Sd:K

16



RZAVG
(0.75,1)

D,

(0.38,0.62)"
S1 AN

S > D
Dy

>

AVG
P 1

Figure 7:Sensor example: On the left an example of a network with 2 sensors and 2 sinks is given.
We let PMAX = N = 1, and hs,p, = hs,p, = 1,hs,p, = 10, hs,p, = 0.7, and the lower bounds on
rates are M1 = 0.6, M2 = 0.4. On the right, the set of feasible average power dissipations is given.

We also assume that a node can only send to or receive fromooieeat a time.

In addition, nodes can change their transmission powertover. We assume a slotted protocol,
where in every slot, every nodes can choose an arbitrary transmission powgt). If s chooses not
to transmit, it sets’(¢) = 0. A succession of slots in time is called a schedule. Lidlkachieves
rate r.4(t) where the rate depends on allocated powers, as explainee.aliee denote withr/}/'
the average rate of linkd throughout a schedule. L&t'V¢ be the vector of al{ 24} %}, 4<n. We
denote byX a set of feasiblec?V“, that is such that there exists a schedule and power albmsatihat
achieve those rates. Similarly to the average rate, we daulate the average power dissipated by a
node during a schedule, which we denotert}/’“. We denote byP(xV“) a set of possible average
power dissipations that achieve average sat€. Refer to [21, 20] for a more detailed explanation
of the model.

From the application point of view, we assume sensors medlseisame type of information. Each
of the several sinks needs to receive a certain rate of tieennation, regardless from what sensor it
comes. Let us denote with, the total rate of information received by sidkWe then have a constraint
Ry < M.

In order to define routing, let us further introduce a conodpiaths. Pathh = {1--- P} is a set of
links. We sayA4, , = 1iflink [ = (s, d), for somes, d, belongs to pathp. Otherwiseg,; = 0. We also
sayB,, = 1 andC;, = 1 if nodes is the starting or the finishing point of the patfrespectively. Let
y, be the average rate on path

The goal is to minimize the average power dissipations, utiteeabove constraints. The set of
feasible average power dissipations can be formally desdras

P = {pAVG | (E'XAVG c X) pAVG c 7)(XAVG)7 Ay S XAVG’ R = C'y S M}

We are interested in finding the min-max average power dilmtaver setpP.

This is a difficult optimization problem that has not beemyfsblved, and we do not intend to solve
it here in its general form. Instead, we want to illustrataisimple example from Figure 7, that the
feasible set does not always have the free-disposal psopad furthermore that WF, as such, cannot
be used.

In our simple example from Figure 7, we consider two senserandS,, and two sinks); and
D,. We have three linkg,S1, D;), (Ss, D1), (Sa, D), and three paths that coincide with each link (we
assume other links cannot be established due to for exanguisance of a wall).

It is shown in [20] that in this type of network any averageraflocation can be achieved by using
the following simple power allocation policy: when a nodéransmitting, it does so with maximum

17



power; otherwise it is silent. It follows that any possibdtedule in the network can have four possible
slots:

Slot 1 of duration a;: Only sensoiS; sends to sinkD; with full power PM4X andS, is silent.
Slot 2 of duration as: SensorS; sends taD; while S5 sends taDs.

Slot 3 of duration a3: Only S, sends taD;.

Slot 4 of duration a4: Only S, sends taDs.

If we normalize the duration of the schedule, we haye- oy + a3 + a4 = 1.
Under the above scheduling, we have the following averags end average dissipated powers

PMAXh Dy PMAXh Dy PMAXh )
R = o N 2D O‘2N n pMA;hZ b Qs N b ) (17)
2Dy
PMAXhS PMAXhS
Ry = o N+ pJVIAXQhD;lD2 pale! N 222 (18)
PG = (an o+ ag + ag) PYAY, (19)
P2AVG _ (042 + Oé4)PJ\/[AX. (20)

The set of feasible average powers is this= {(PAVC PAVE) | (Bar.4) St o = 1, Ry >
Ml, R2 2 Mg}

To obtain a numeric example, we skt = PMAX = N = 1,hg,p, = hs,p, = 1,hs,p, =
10, hs,p, = 0.7, and M1 = 0.6, M2 = 0.4. Setting these values in (17)-(20) and simplifying the
constraints, we achieve the following set of inequalithest efines set’:

P£4VG+P214VG Z 17
PflVG+a3 < 1,
TPAYC + 4oz +1 < TPV,
PV £ 110a3 — 3.4 > 10PN,

PAVE PAVE ay € 0,1].

The setP is depicted on the right of Figure 7. It is easy to verify tHastset does not have the
free-disposal property. We verify that the first step of Wgoaithm has no solution, hence water
filling does not give the min-max allocation. On the otherdhamsingle iteration of MP gives us the
min-max allocation on the sét which in this case i$0.38, 0.62). We underline again that only due
to the simplicity of the example, WF fails at the first stepd &P solves the problem in one step. In a
more complex example WF might fail on any step whereas MPag#iin solve the problem. However,
due to the simplicity of the presentation we give here onlyn@de example.

5 Conclusion

We have given a general framework that unifies several esutmax-min and min-max fairness
encountered in networking examples. We have extendeddheefrork to account for new examples
arising in mobile and peer-to-peer scenarios. We haveddtmi the role of bottleneck arguments in
the water-filling algorithm, and explained the relation e free-disposal property; we have shown
that the bottleneck argument is not essential to the defmdf max-min fairness, contrary to popular
belief. However, when it holds, it allows us to use simpleyoaithms. We have given a general

18



purpose algorithm (MP) for computing the max-min fair vecstdienever it exists, and showed that it
degenerates to the classical water-filling algorithm, wiea disposal property holds. The existence
of a max-min fair vector is not always guaranteed, even onpamisets. We have found a class of
compact sets on which max-min fairness does exist. The sxieof the class to other useful cases
(such as discrete sets [24]) remains to be studied. Finve#lyhave focused on centralized algorithms
for calculating max-min and min-max fair allocations. IiMae interesting to explore their distributed
counterparts.

References

[1] A. Charny. An algorithm for rate allocation in a packetiched network with feedbackM.S. thesisMIT, May
1994,

[2] A. Mas-Colell, M. Whinston, J. GreeMicroeconomic TheoryOxford University Press, 1995.

[3] ATM Forum Technical Committee. "Traffic Management Sifieation - Version 4.0". ATM Forum/95-0013R13
February 1996.

[4] W. Bossertand J.A. Weymark. Utility in social choice.3nBarbera, P.J. Hammond, and C. Seidl, editdesydbook
of Utility Theory. Kluwer Academic Publishers, 2004.

[5] M.A. Chen. Individual monotonicity and the leximin sdlon. Economic Theoryl5:353-365, 2000.
[6] D. Bertsekas and R. Gallagdbata Networks Prentice-Hall, 1987.

[7]1 D. Rubenstein, J. Kurose, D. Towsley. "The Impact of Nudst Layering on Network Fairness’|EEE/ACM
Transactions on Networking 0(2):169-182, Apr. 2002.

[8] E. Hahne. "Round-Robin Scheduling for Max-Min Fairngs®ata Networks”.IEEE Journal on Selected Areas in
Communicationg9(7):1024-1039, Sept. 1991.

[9] F. P. Kelly, A.K. Maulloo and D.K.H. Tan. "Rate control icommunication networks: shadow prices, proportional
fairness and stability”Journal of the Operational Research Socjet9:237-252, 1998.

[10] H. Tzengand K. Siu. "On Max-Min Fair Congestion Contfot Multicast ABR Service in ATM".IEEE Journal on
Selected Areas in Communicatioa§(3):545-556, April 1997.

[11] J. Byers, et al. "A Digital Fountain Approach to RelialDistribution of Bulk Data”. INnACM SIGCOMM 98
September 2-4 1998.

[12] J. Mo, J. Walrand. "Fair end-to-end window-based catiga control”. IEEE/ACM Transactions on Networking
8(5):556-567, Oct. 2000.

[13] J. Ros and W. Tsai. "A Theory of Convergence Order of MaxRate Allocation and an Optimal Protocol”. In
INFOCOM'01, pages 717-726, 2001.

[14] J.H. Chang and L. Tassiulas. "Energy Conserving RautinVireless Ad-hoc Networks”. INFOCOM’'00, pages
22-31, 2000.

[15] L. Georgadis, et al. "Lexicographically Optimal Batad Networks”. INNFOCOM'01, pages 689-698, 2001.
[16] L. Tassiulas and S. Sarkar. "Maxmin Fair Scheduling imaléss Networks”. IINFOCOM'’02, pages ?-7?, 2002.

[17] S. Low and D. Lapsley. Optimization flow control, I:bagilgorithm and convergenclEEE/ACM Transactions on
Networking December 1999.

[18] A.L. McKellips and S. Verdu. Maximin performance of kiry-input channels with uncertain noise distributions.
IEEE Transactions on Information Theq#4(3):947-972, May 1998.

[19] P. Marbach. "Priority Service and Max-Min Fairnessii.INFOCOM'02, pages ?-?, 2002.
[20] B. Radunovit and J.-Y. Le Boudec. When power adaptaiaiseless or harmful.

[21] B. Radunovit and J. Y. Le Boudec. Optimal power contsoheduling and routing in UWB networkd&EE Journal
on Selected Areas in Communicatip8eptember 2004.

[22] J. Rawls.A Theory of JusticeHarvard University Press, 1971.

19



[23] V. Rodoplu and T.H. Meng. Minimum energy mobile wiredewetworkslEEE J. Select. Areas Commuh7(8):1333
— 1344, August 1999.

[24] S. Sarkar and L. Tassiulas. "Fair Allocation of Diser&andwidth Layers in Multicast Networks”. INFOCOM'00,
pages 1491-1500, 2000.

[25] J. Van Leeuwen. Graph algorithms. In J. Van Leeuwertpedhlgorithms and Complexityelsevier, 1992.

[26] M. Win and R. Scholtz. Ultra-wide bandwidth time-hopgispread-spectrum impulse radio for wireless multiple-
access communicationdEEE Transactions on Communicatiods8(4):679-691, April 2000.

[27] Xiao Long Huang, Brahim Bensaou. "On Max-min Fairnesd &cheduling in Wireless Ad-Hoc Networks: Analyt-
ical Framework and Implementation”. Proceedings MobiHoc’01Long Beach, California, October 2001.

[28] Y. Hou, H. Tzeng, S. Panwar. "A Generalized Max-Min Ratcation Policy and Its Distributed Implementation
Using the ABR Flow Control Mechanism”. INFOCOM’98 pages 1366-1375, 1998.

[29] Z. Cao and E. Zegura. "Utility Max-Min: An Applicatio®riented Bandwidth Allocation Scheme”. INFO-
COM'99, pages 793-801, 1999.

A Proofs

A.1 Proof of Existence of MMF

We first give an intuition on how we shall prove the theorem. &asider vector that is leximin
maximal on the sep(X'), and we want to prove that this is at the same time the max-anirvéctor.
The proof is done by contradiction. We assume that thereseaigectory that violates the definition
of max-min fairness of vectaf. We will then construct vector from z andy such that'is leximin-
larger thanz, which will lead to contradiction. Functiog() is strictly increasing, hence there exists
and inverse ! (), which is also strictly increasing. Although s&tY) is not convex, sek’ is convex.
Therefore, we will chose such that vectof, constructed ag—'(2) = a¢= (%) + (1 — a)o1(y), is
leximin larger thant.

Proof of Theorem 1: Let ¥ € ¢(X) be a vector such that for ajl € ¢(X') we haveT (%) lezx T(Y).
Such a vector exists according to proposition 2, sincé’sistcompact. In order to prove the theorem,
we proceed by contradiction, assuming that there giastd an index € {1, ..., N} such that, > z;
and for allt € {1,..., N}, z, < z, we havey, > z,. We then define a permutation: {1,..., N} —
{1,....N} suchthatforall < j, Zr; < Z(;), and either ) < 41y Orl = N, wherel = 7' (s).
The last part of the requirement is important if there ares\components of the vector that are equal
to x,, hence there are several permutations that maintain noreakng ordering. We then wanto
be mapped by to the largest such index: if= 7' (s) than eitherr, < (1) or [ is the last index
(l = N).

Next, let us define vector

o) = ¢lag™(7) + (1 = a)o™ (7). (21)

Although we cannot make a convex combination’@indy since set)(X') is not convex, we can make
a convex combination af~!(Z) and¢~(3) in the setX which is convex.

Fora € (0,1), Z(«) belongs top(X) due to convexity of¥. From (21) we have for allv €
(0,1),i € {1,..., N}, min(¢~ (z;), 07 (3)) < ¢~ (Z();) < max(d~(z;), o~ (y;)), hencamin(x;, y;) <
Z(a); < max(w;,;), due to strictly increasing properties of functiofisande; *. Also, for alli let us
pick an arbitrary; satisfying

7 () =07 (i) ) -
a; € (aﬁ;l(m)—qb;l(yi)’l ’ xse[yz_,xz),
[0,1), otherwise

20



alx; — ys) (1 —a)(zi— )

A
\ 4
A
v

Figure 8: Choice of constants: suppose for simplicity that ¢(x) = z. We choose « such that: if for
some i, x; > x4, then z; > x4 (as depicted on the figure), if x; < xz,, then y; > z; > x;, or else for any
o, 2 > Tg.

and we call,,, = max;(«;) andz’ = Z(a,,) € ¢(X) (sincea,, € [0,1)). Intuitively, if for somes,
y; < xg, We want to have; > z,. If z; < x, (including wheni = s) we than by assumption have
y; > x;, and we choose such that we get; > z;. Finally, if bothy;, > z,,z; > z,, than we can
select anyy and we will havez; > x,. A choice of constant is depicted in Figure 8.

We have chosen the highest@f, hence we now have thatif, < z,, thanz; > z;, otherwise
z; > v, We also have, > x,. From this, we derive the following property of the sortedtoes

Zr(i) > Tr(i) fOI’i<l,
Ze(i) > Tr(l), fori > (.

lex
We first notice that for all, z;;) > x.1), and as7 () > 7 (Z) we conclude that) = z:1) = ).
Next, assuming that for some< [ and for all; < ¢ we havez;) = z:(;) = zx(;), then again as

lex
forall j > i, zz(jy > @4, and7T (¥) > 7T(Z) we conclude that;) = 2z, = x.;). Hence, by
induction we have proved that for alk [ we havez;) = 2.4 = 2. Finally, since for alk > [ we

havez,q) > x.@), hencez; > z.q) we necessarily have that(?) S T (%), which brings us to the
contradiction.

Therefore, we conclude that a leximin maximal vector on al$es also a max-min fair vector,
and sett’ is max-min achievable.

g.e.d.

A.2 Proof of Correctness of MP

The idea of the proof is the following. We first want to showttimeevery step we decrease the size of
S™, that isS™ c S™~!. From this we will conclude that the algorithm finishes in aisnV steps. We
then show that what remains in the $&t once the algorithm stops (that$' = (), is the max-min
fair allocation.

Before starting, we us define the following, as in Section 3.1

X" = {Fexm | (WieS" Yy, >T" (Fiec S a >T"} (22)
R" = {Zex" | (VieS" VYa >T") (23)
st = {ie{l,.,N}| (Vi€ x")a; >T"} (24)
T" = max{T |37 X" ) (Vie S" Na; >T}. (25)

We also introduce several lemmas before proving the maoréme.
We first prove a lemma that illustrates the main idea of therétlgm, that in each steps we fix one
by one the smallest coordinates of vectors to corresporilivaues.

21



Lemma 1 For all n whereT™ exists, for allz € X™, and for alli € S"~'\ S", we haver; = T".
Furthermore, if for allm < n and for alli € S™~'\ S™ we haver; = 7™, for all i € S we have
x; > T™ and for somé € S™ we haver; > T™, thenz € X™".

Proof: Forn = (0 we haveS® = {1, ..., N} and the result is trivial. Let us select arbitrafyc X",
n > 0,and:; € S™\ S™*L. From (22) we have for all € S"~1, z; > T™, and from (24) we have for
alli ¢ S™, x; <T™. Hence we have; = T".

For the second part, we also proceed by induction. Obviotiglyx°. Suppose, for somes < n,
7 € X™ L Then itis easy to verify satisfies (22) fox™, hencer € X™. By induction, we verify
that alsar’ € A™.

g.e.d.

Set X" is not compact by definition and we do not know if the maximun{2B) exists. The
following lemma is rather technical, and it proves the maximalways exists.

Lemma 2 If setX is compact, then the maximum in (25) exists fomall

Proof: SinceX? = X is compact, the maximum exists far= 0. Suppose: > 0. From (25) we
have that
T" = max min z;.
zexn—1iesSn—1

Let us denote WitH” = supzc yn—1 min;egn—1 ;. 1" always exists and” > 7"~!. We proceed by
contradiction. Suppose that the maximum does not existdiEng X". By definition of 7", for every
integerk > 0 there existg* € X! such thatl” — min;cgn—1 2¥ < 1/k.

We next want to select a subsequence of sequéfftesuch that for each member of the subse-
quence, the minimal component always has the same indestedehyl. More formally, sinceS™~!
is a finite set, we can selettc S"~' such that there is an infinite subsequefg&®} ¢ X! of
sequencd i} where for allk({) we havearg min;cgn—1 27 = 1.

This subsequence convergesito= limy)— 70, We have that’ € X due to compactness of
X. By construction, we also have for alE S™~!, 2} > x; = T" > T""'. By lemma 1 we have that
foralli & 5", ki (1), ks(1), 2" = #*" = #, hence?” € X!, again by lemma 1. We see that
vectory’ satisfies all the conditions of (22), hence it belong&’towhich leads to a contradiction.

g.e.d.
We next show another property of the coordinates of vectoAs'
Lemma 3 Forall n, Z, ¢ € X™ andt € {1,..., N} such thatr; < 7", we havey, > x;.

Proof: We prove lemma by induction over. If n = 1, we have for alt, z, > 7" andy, > T,
hence forr, = T, we havey, > z,. Next assume the above is true for- 1. Supposer, < T". We
then also have, < T"~!, hence by the induction assumption we have> z,. Finally, if for somet,
xy = T™ theny, > T™ or else we have a contradiction with the definitiori/&f.

g.e.d.

Finally, we show that in each step we keep the max-min faitoran X™ in order to show that in
the last step, when we have a single point remaining, thistpall indeed be the max-min fair one.

Lemma 4 If 7 is max-min fair vector o’ then for alln such thatt™ # (), ¥ € X™. The same holds
for R".

22



Proof: We prove lemma by induction. if ¢ X! thenZ is not leximin maximal, hence the contradic-
tion. Let us next assumée X"~ ! andz ¢ X", whereX" # (). Then there existg € X" ands € S"
such thaty; > z,. Also, by lemma 3, for alt € {1, ..., N} such thate; < 7™, we havey, > z;. This
contradicts the assumption thats max-min fair which proves the lemma. Sing& C R", we have
the second claim.

g.e.d.

Now we are ready to prove the main theorem.
Proof of theorem 3: Let us callZ max-min fair vector on¥. From lemma 2 we know that the
minimum in (25) is achieved. Therefore, there exise S"~! 7* € X"~! such thate;. = 7™, and
we have* ¢ S", thus we proved™ C S"'. We conclude that sequeng’| decreases and we will
haveS™ = () in at mostN steps.

We also notice that for everiye {1, ..., N} there existsn such that € S™~! andi ¢ S™. From
i € S™ 1 we have that for allf ¢ X™, z; < T™. Fromi € S™ we have that for alk: ¢ X! we
havez; > T™ in the constraints fon/ P. Now as for alln, X™ C X! we have that for alh > m
andz € X" we haver; = T™. Once we haves™ = () it means that all components of vectorsRfi
are fixed henc¢R™| = 1. According to lemma 4, this single vectorRf" is also max-min fair ont’.

g.e.d.

A.3 Proof of Equality of MP and WF

Proof of theorem 4: Let us callT}, » the solution to thél/ P* andTy;, - the solution to théV F*. T}, -

is obviously achievable in/ P! so we havd’y,, > Ty, .. Suppose thak},, > Ty, . This implies that
forall s € {1,..., N} we have(#},,), > T}, ». Due to the free-disposal property, we can successively
decrease each of the componentg ¢drger than corresponding lower boundin until arriving to a
vectory, y; = max(T}y,p, m;). This vector is feasible, which contradicts the optimadify7}., .. The
same reasoning can be applied to the successive algoridps, &ty decreasing the dimension of the
feasible set.

g.e.d.

A.4  Proof of Convergence of Utility Fairness to MMF

Proof of theorem 2: We first prove that ift* is an accumulation point for the set of vectats, then
Z* is the max-min fair vector, and to prove that we assume théragn that exists a vectgf and a
corresponding index = s(y) such thaty; > z, and for allt € S x; < =, = 2, < y;. Letus call
To(x) = {t € {1,...,N} |z > a5}. If setTy(z) is empty, we pick an arbitrary > 0, else we call
t = argminer, () =; ande = zf — 7.

Next, similarly as in proof of theorem 1, we pick an arbitrary ¢/(ys — % + =7 — y;), and we
call Z= (1 — o)+ ay. If ¢ = z, — ¥ ande, = x7 — z, itis easy to verify that > ¢; + ;. Also,
7 € X due to convexity oft’.

Finally we pick an arbitrary > 0, A > 0 such thaty + A < ¢;, and somey, such that for all
n > ng and for allu € {1,..., N} we have|f,,, (z¥) — fn. (z'")| < 6. The choice of the above
constants is depicted in Figure 9.

Now we show that for large enough we have a contradiction with optimalityz6f. Consider
the expression defined by

A= Y (nale) = Fa ™).

23



* Mn Zs 2 x;k x;nn

€1 €9

Figure 9:Choice of constants

From the optimality off”» we haveA < 0. Also

A2 o (20) = foa @)+ Y (fna(20) = fona (™)) (26)

teTs(x)
From the theorem of intermediate values, there exist nusafjeandc} for all ¢ € T(z) such that

m n
Ty S g < Zs,

fmn(ZS) - fmn(xgm) = f;ln(C?)(Zs - ‘,L,;nn)‘
and

@< <ap,
P (E) = Fn (1) = Fo (€)@ = 24).

wheref, is the right derivative off,,,. From the above we have

S (2s) = fn (2d) > Afrlnn(ZS)v
fn @) = frnn(2) < (6 +€) fr,, (20)-

thus from eq. (26)
A > Afr/nn(zs)—((S—l—Q)MfT/nn(zt)
> fona () <A — (64 e)M 7,nn(zt)>

mn(ZS)

where)M is the cardinality of seT;(z). Now from eq. (5), the last term in the above equation tends to
A asn tends to infinity. Nowf,, > 0 from our assumption thus, ferlarge enough, we havé > 0,
which is the required contradiction.

The set of vectorg™ is in a compact sek’ hence it has at least once accumulation point. Since
each accumulation point is also max-min fair, and from priypg we have the uniqueness of a max-
min fair vector we conclude that the set of vect@fshas a unique accumulation point hence

g.e.d.

24





