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Abstract— In this contribution we use a model of adaptive
frequency oscillators to build adaptive Central Pattern Gen-
erators (CPG). We use a network of adaptive coupled Hopf
oscillators to dynamically learn any periodic signal. The signal
is then encoded as a stable limit cycle in the network. The
interest of this approach is that the learning is not an external
optimization process but is embedded in the dynamics of the
network. The learning is successful even when the teaching
signal is noisy, and the encoded trajectory is stable against
perturbations. Furthermore, the learned trajectory can easily be
modulated in frequency or amplitude in a smooth way.

I. INTRODUCTION

For the last two decades, models of Central Pattern Gener-
ators (CPGs) are increasingly used to control the locomotion
of autonomous robots, from humanoids to multi-legged insect-
like robots [1]-[4]. CPGs are often modeled by means of
coupled nonlinear oscillators [5]. Complex phase patterns can
arise from these couplings and therefore, make these systems
interesting for modeling gaits of animals and for controlling
robots [6]. However, in most cases the design of such CPGs
is quite difficult since the different parameters and coupling
constants have to be tuned by hand or by an optimization
algorithm. Indeed, the values of several parameters usually
need to be adjusted, such as the parameters controlling the
frequency of the oscillations and their respective phase lags.

In previous contributions [7], we showed that by appro-
priately converting the parameter controlling the frequency
of an oscillator into a dynamical system (i.e. a new state
variable in the system), the oscillators were able to adapt
their frequency to the frequency of any periodic or pseudo-
periodic input signal. Such a mechanism is useful for adapting
the frequency of the oscillator to the natural frequency of a
mechanical system or to the frequency components of some
sensory feedback signals.

Moreover, the form of the adaptive rule we introduced is
simple and applicable to different kinds of oscillator. We called
this adaptation mechanism Dynamic Hebbian Learning since
it is a correlation-based learning rule [8]. The interest of such
an adaptive rule is that it is part of the dynamical system, all
the learning is embedded in the system and we do not need
any supervisor, any external optimization or any preprocessing
of the teaching signal. Furthermore, we analytically proved the
global convergence of the learning to the desired frequency,
for any signal that can be written as a Fourier series. Thus,
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within this framework, constructing adaptive oscillators based
on Hopf, Van der Pol, Rayleigh, Fitzhugh-Nagumo oscillators
or Rossler oscillator is straightforward. In other contributions,
we already showed how simple adaptive controllers could be
built with our adaptive mechanism to control simple robots
with spring actuators [9], [10].

In this contribution, we will show how we can extend this
general framework to build adaptive CPGs modeled as cou-
pled adaptive oscillators. We show that with such adaptation
capabilities, the CPGs are able to learn any desired periodic
pattern. The parameters of the CPG are dynamically adapted
by the system and no external optimization is required.

We will show that our adaptive CPGs can learn the shape
and phase relations of complex periodic inputs. The adaptive
CPG learns a periodic input pattern and after convergence,
if the input signal disappears, the pattern stays encoded as a
structurally stable limit cycle in the system of coupled oscil-
lators. The learning is successful even if the pattern to learn is
noisy or if its period is not well-defined. Encoding patterns, or
trajectories, as limit cycles is of great interest for controlling
robots because the system is robust to external perturbations
and can easily integrate sensory inputs. The method we present
here can then be used to design robust CPG-based controllers
for the locomotion of robots, in particular when an example
of the gait is available.

Il. ADAPTIVE CENTRAL PATTERN GENERATORS

In this section, we present our model of adaptive CPGs. We
first introduce the idea of dynamic Hebbian learning for oscil-
lators, then we show how the frequency spectrum of a periodic
signal can be learned by a network of uncoupled oscillators
with a simple feedback loop. These oscillators can learn the
frequency and the amplitude of the frequency components of
the periodic teaching signal. Finally we introduce coupling
between these oscillators in order to keep the correct phase
differences between them. This final network corresponds to
our model of adaptive CPG.

A. Dynamic Hebbian Learning for Oscillators

Recently, we presented a method for constructing adaptive
frequency oscillators [7]. In this method, the parameter influ-
encing the frequency of the oscillator becomes a new state
variable and adapts to the frequency of any periodic input



1\
40}
X 0
-1
0 0.5 1
Time 3 35¢
1
X 0
30t
-1l ‘
999 999.5 1000 0 500 1000
Time Time
Fig. 1. This figure shows an example of frequency learning in the adaptive

Hopf oscillator. The learning input is a simple harmonic signal, F(t) =
sin(30t). The right figure shows the evolution of w, we clearly see the
adaptation to the correct frequency. The left figures show the oscillations
of the Hopf oscillator (the x variable), at the beginning of learning (upper
graph) and after learning (lower graph), we also plotted the teaching signal F
(dashed line). The initial conditions are w(0) =40, x(0) =1, y(0) =0, p=1
and € =0.9.

signal. In this contribution, we use adaptive Hopf oscillators
to construct adaptive CPGs. We chose an Hopf oscillator
because it possesses an harmonic limit cycle that will be used
to decompose the periodic function we want to learn into a
sum of sines and cosines. The adaptive Hopf oscillator that
we designed is described by the following set of differential
equations

X =y(u—r?)x —wy+eF(t) (1)
= V(L — %)y + aX )
m:-eFmg ?)

We can recognize the traditional Hopf oscillator (variables
x and y) perturbed by a function F. The frequency of such
an oscillator is defined by w and is then a state variable
in the adaptive oscillator. € is a coupling constant, p > 0
determines the radius of the limit cycle, y determines the speed
of convergence to the limit cycle and r = /x24y2. In this
system, the oscillator will learn the frequency of the periodic
input F(t), it means that w will converge to the frequency of
F.

If the input F(t) has several frequency components, the
oscillator will generally adapt its frequency to the closest
frequency component of the input. It can be shown that for
any initial conditions, w converges to one of the frequency
components of F. For a complete discussion about dynamical
Hebbian learning, convergence proofs and extension to more
complex oscillators see [7]. Figure 1 shows how the adaptive
Hopf oscillator learns the frequency of a periodic input signal.
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B. Feedback structure and amplitude adaptation

In this section we introduce a network of adaptive Hopf
oscillators that learn the frequency components of a periodic
input signal and their amplitudes. We introduce a simple
feedback loop that controls the learning.

Each oscillator of the network will learn one frequency
component of the teaching signal. It will also learn the as-
sociated amplitude. When an oscillator has learned the correct
frequency and amplitude of a frequency component of the
input, this frequency component will then disappear from the
teaching signal. In order to achieve this, we use a simple
feedback loop described in Figure 2. In this figure, we see
that the learned signal is the sum of all the outputs of the
oscillators, weighted by the corresponding amplitude. In that
sense we have a Fourier decomposition of the input signal.
The feedback loop subtracts the already learned signal from
the teaching signal. So only the frequency components that
were not already learned are still sent to the oscillators.

The network of N oscillators, with frequency and amplitude
adaptation, is described by the following set of equations

Xi = V(U —rd)x — iy +€F (t) (4)

Vi = Y —r2)yi + o ©)

W= —sF(t)& (6)

ai =nxiF(t) @)
N

F(t) = Preacn(t) — _Z)O(ixi (8)

where x;, yi and w; describe the it adaptive Hopf oscillator.
ri = y/x*+y? n and € are positive coupling constants con-
trolling the learning rate. Peacn represents the input signal to
learn. The amplitudes of the frequency components are learned
with the a; variable. The learning rule is a simple correlation
based learning (Hebbian type), here a; increases when the
functions x;(t) and F(t) are correlated, which happens when
they have the same frequencies. a; will stabilize as the associ-
ated frequency component will disappear from F(t) when the
amplitude is correct.

With the network we presented we are able to learn the
frequency components of any periodic input. As long as the
frequency spectrum is finite, as each oscillator codes for one
frequency component, it is sufficient to have as many oscilla-
tors as frequency components in the system. The amplitude of
each frequency component is also learned with the a; variable.
For the case of continuous frequency spectrum, we will show
in Section Il that the network can nevertheless learn a good
approximation of the signal. After learning, we set F(t) =0
and the learned signal, Qjearned = ZiNzodiXi, is coded in the
network of oscillators. But when the learning signal disappears
and if perturbations occur, the phase relations between the
oscillators will not be kept. In the next section, we add a
coupling scheme to the previous network of oscillators. The
purpose of such a coupling is to keep the correct phase differ-
ences between the oscillators. After learning, the network is
composed of uncoupled Hopf oscillators. Each Hopf oscillator
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Fig. 2. This figure shows the structure of the network of adaptive Hopf

oscillators. Each oscillator receives the same learning signal F (t) = Pieacn(t) —
Siaixi, which is the difference between the signal to be learned, Pieacn(t), and
the signal already learned, Qjearned(t). Refer to Equations (4)-(8) and to the
text for more details.

is structurally stable, so a perturbation on the oscillators will
be damped out and the x; variables of the oscillators will still
be sinuses with right frequencies and amplitudes. Nevertheless,
the phase relations between the oscillators will be destroyed
and thus the Qjearneg Signal will change. We now discuss how
to force the correct phase relationships between the oscillators.

C. Stable Central Pattern Generators

Phase relations between oscillators can be achieved by
coupling them. Two oscillators, when coupled, are entrained
[11] if their frequencies have the relationship of the form w; ~
p(uz, p,q € N. In the case of the Hopf oscillator, entrainment
reaIIy works only for p = . When numerically constructing
the Arnold tongues of a forced oscillator, only the main tongue
is clearly visible. Tongues of the form 2 are not visible and
thus phase synchronization is difficult or even impossible in
numerical experiments.

Nevertheless, we know that it is possible to have 1:1
phase-locking. We can use this fact to derive a coupling
scheme for the network. Lets assume that oscillator 0 has
the lowest frequency, wyp, and that this frequency defines also
the frequency of the learned signal. Then, as the signal is
periodic, we know that its Fourier series will contain frequency
components of the form w; = nwy, n € N. The Hopf oscillator
has a limit cycle that is a circle in the state space x —y. In
our case the oscillator is perturbed with signals with small
amplitudes, so the limit cycle can still be approximated by a
circle, thus we can calculate the instantaneous phase of the
oscillator. By using this information and the fact that each
oscillators has a frequency that is a multiple of wg, we can
build a phase signal of frequency w; which is in-phase with
oscillator 0 by rescaling the phase signal from oscillator 0.
This is done in the following equation

1 Yo

o _
Ri = —sgn(xp) cos —_——
@0 \E+Y3

9)
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Now we have a phase signal R; which is in-phase with xg
but has the frequency of oscillator i. If we couple R; with
oscillator i, then we will see phase-locking between oscillator
0 and i. The new equation for oscillator i, with coupling to
oscillator 0 for phase-lock, is given by the following equation

X =y(U— riZ)Xi — Wy +eF(t) +tsin(Ry)
Vi = V(U= r2)i + X

where T is a coupling constant. Coupling all the oscillators
with oscillator 0 assure stable phase-locked oscillations. Nev-
ertheless, we also have to know the phase relations between
each oscillator, because it is likely that in a complex signal, the
oscillators will not have in-phase oscillations. This phase infor-
mation must be kept by the system. As we did for frequencies
and amplitude, we now introduce a new state variable, to learn
the specific phase difference between oscillator 0 and oscillator
i, whose equation is

(10)
(11)

1 Yi

@ =sin | Ri—sgn(xj)cos ™} [ ——2— | — @
VP

This equation is a simple first order system where @
converges to the phase difference between oscillator i and R;.
We use the sin function because we are interested in the phase
difference modulo 21t

By using this phase information with the coupling scheme
of Equation (9), we can now build a network of oscillators
able to keep the correct phase relations between the oscillators.
Finally, we have a network of oscillators which is able to learn
any periodic input signal that has a first frequency component
that defines the frequency of the whole signal (oscillator 0).
Each oscillator has 5 state variables, 2 for the oscillatory
motion that assure structural stability (x; and y;), one for
learning the frequency (wy), one for the amplitude (a;) and one
for the phase relations (q). The network is shown in Figure
3 and summarizes in the following equations

(12)

Xi = (L —r?)x — wiyi +€F (t) +-tsin(Ri — @) (13)
Vi = V(U — r)yi + wixi (14)
G = —€F (t )y—l (15)
=nxiF(t) (16)
c'po =0 (17
@ =sin (Ri—sgn(xi)cosfl(—ﬁ)—qq),Vi;éO (18)
with
oy 1 Yo
Ri = —sgn(xg) cos —_—— (19)
@\ e
and
N
F(t) = Pieacn(t) — .Z)aixi (20)
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Fig. 3. This figure shows the structure of the network of adaptive Hopf

oscillators after we added coupling. Each oscillator receives the same learning
signal F(t) = Peacn(t) — 3 aiXi, which is the difference between the signal
to be learned, Pieacn(t), and the signal already learned, Qjearned(t). Then all
the oscillators (except oscillator 0) receive the scaled phase input R; from
oscillator 0. Refer to Equations (13)-(18) and to the text for more details.

We have now presented a network of coupled adaptive Hopf
oscillators that can learn a periodic input. We may note that
the adaptation is done in a single stage, we do not need to first
learn the signal and then add the coupling, the learning takes
place in the coupled network of oscillators. In the next section,
we will show numerical experiments proving the properties of
our adaptive CPG.

I1l. EXPERIMENTS

In the previous section, we presented a mathematical model
of coupled adaptive oscillators and claimed that it was able to
learn periodic signals and encode them in stable limit cycles.
We now present numerical experiments to show how our
system is working. First we present how it learns a well defined
periodic signal. Then we present how learning successfully
occurs in the presence of noise. We also show that the system
is stable against perturbations. Afterwards, we show that with
such a system, we can easily modulate the learned pattern in
frequency and amplitude and keep smooth trajectories. Finally,
we also show how the system can approximate periodic signals
with continuous frequency spectrum.

A. Learning periodic input signals

As an example, we use the system described by Equations
(13)-(18) to learn the input signal described by the following
equation

Pteach = 0.8sin(15t) + cos(30t) — 1.4sin(45t) —0.5cos(60t)
(21)
We use a network of 4 oscillators to learn the periodic
pattern. The initial frequencies w;(0) are uniformly distributed
between 6 and 70. The initial amplitudes a;(0) and phase @ (0)

equal 0.

The results of the experiment can be seen in Figures 4 and
5. An interesting aspect of this learning is that the frequencies
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Fig. 4. This figure shows the evolution of the state variables of the network
of oscillators during learning of an input signal and the evolution of the error
of learning. The signal to learn Pyeeh is defined by equation (21). The upper
graph is a plot of the error, defined by error = ||Reach — Qlearned||. The 3 other
graphs show the evolution of the frequencies, wj, the amplitudes, a; and the
phases, @. The variables for each oscillator are plotted, variables of oscillator
0 are the plain lines, variables for oscillator 1 are the dotted-dashed lines,
variables for oscillator 2 are the dotted lines and the dashed lines represent
oscillator 3. The initial conditions are 0;(0) = @(0) =0, x(0) =1, yi(0) =0
Vi, u=1,y=28,£=0.9, n=0.51=2. The frequencies w;(0) are uniformly
distributed from 6 to 70. Please refer to the text for a discussion of the results.
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Fig. 5. This figure shows the input signal to learn Reacn in the upper graph
and the result of learning Qjearned in the lower graph. It is obvious that the
network correctly learned the input pattern.

of each oscillator are adapted. When a frequency matches a
frequency component of the input signal, the corresponding
amplitude starts adapting and converges quickly. After oscil-
lator O gets the correct frequency, the phase ¢ converges to
the correct values. By looking at the error plot, we clearly see
each time a frequency component is learned. The error finally
becomes 0, the signal is completely learned. We see that the
frequencies, amplitudes and phase relations are exactly the
ones of the teaching signal. Figure 5 shows a plot of equation
(21) and of the learned signal, it is obvious that the network
of oscillators correctly learned the periodic input.

B. Learning in the presence of noise

In this section we show that the network can learn patterns
that are noisy and can even filter out the noise to learn a clean
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Fig. 6. This figure shows the evolution of the state variables of the network
when learning a noisy input. The input is the signal defined by Equation (21)
to which we added uniformly distributed random noise between [-2,2]. All
the parameters used are the same as in Figure 4. Discussion of convergence
is discussed in the text.

pattern.

We take the same learning signal as the previous section and
we add uniformly distributed random noise between [—2,2] to
this signal. Then we use the same network of oscillators as in
the previous section to learn this noisy signal. The results of
the experiment can be seen on Figures 6 and 7. These results
have to be compared with those of Figures 4 and 5.

First we clearly see that the learned signal corresponds to
the teaching signal when the noise is filtered. This phenomena
can be explained because the network is learning on a large
time scale so what is really learned does not depend on the
noise that has a null mean on average and does not change
the distribution of the frequencies of the signal.

Nevertheless we see that the convergence is not exact in
the sense that the wy, a; and @ are converging to the right
values but are still changing a bit around the correct values
because of the noise. This variation is not very visible for the
frequencies, but is clear when looking at the amplitudes and
the phases. This phenomenon seems evident because the noise
is mainly acting on these two parameters.

Finally, even if the convergence is not as exact as previously,
the learned pattern corresponds very well to the teaching
pattern without noise. In that sense learning is successful.

C. Stability against perturbations

In this section we present a simple experiment to show the
stability properties of the oscillator. We take the network we
entrained in section I1I-A and perturb it. To show the strong
stability properties, we perturb each oscillator of the network
with a random perturbation of intensity 10. It means at time
tp, we change the states x;(t,) and y;(tp) with a random value
uniformly distributed between [—10,10].

We notice that such a perturbation is really strong since
the limit cycle of the Hopf oscillator is of radius 1, which
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Fig. 7. This figure shows the noisy teaching signal (upper graph) and

the learned pattern (lower graph). We clearly see that the signal learned
corresponds to the teaching signal from which noise is filtered. A more
detailed discussion can be found in the text.

Time [s]

Fig. 8. This figure presents the evolution of the output signal of the network
Qiearned- At time tp = 1 a perturbation occurs on the oscillators of the network.
We clearly see that the network quickly recovers its original behavior, thus
proving the stability properties of the system. Refer to the text for an extended
discussion.

means Xi,Yi € [—1,1]. In Figure 8 we present the result of
the experiment. At time t, = 1 we perturb the oscillators,
we clearly see on the figure that the resulting perturbation is
really strong since Qjearned, Which generally oscillates between
[—3,2] goes to 20.

As soon as perturbation is over, the network goes back to
its natural region of oscillations, but the shape of Qjearned iS
not exactly the one learned. It takes about 4 cycles to the net-
work to completely recover its original pattern of oscillations.
This experiment clearly proves the stability properties of the
network of adaptive oscillators.

D. Modulation

In this section, we want to show other properties of the
network of oscillators that make it suitable for trajectory
generation in robotic applications. After learning, we have
5 vectors of data representing the states of the network, X,
¥, @, @, @ each vector being in RN (N is the number of
oscillators). Thus a linear change of the vectors representing
the frequency or the amplitude of the trajectory should change
smoothly the behavior of the system. For example to generate
a trajectory that is 2 times faster, we just have to set & to 2.
A trajectory with a 3 times smaller amplitude is generated
by setting d to %6(. This parameter change does not change
the stability properties of the network and we have a smooth
transition between the trajectories when the parameters are
changed, because of the intrinsic dynamic properties of the
system. Such modulations in frequency and amplitude where
done and results of the experiments can be seen in Figure 9.
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Fig. 9. This figure shows the results of experiments on the modularity of

the network. The upper graph shows the behavior of the system when the
amplitude is changed. At time t = 2, the amplitude is divided by 2 and at
time t = 4.5 the amplitude is multiplied by 3. The lower graph shows the
behavior of the network when the frequency is changed. At time t = 2 the
frequency is divided by 2 and at time t =5 frequency is multiplied by 3.
In both graphs, we can notice the smoothness of the trajectory when the
parameters are changed. More details can be found in the text.

E. Learning complex signals

This last section of experiments deals with the case of more
complex signals. We showed that our adaptive CPG could
encode in a structurally stable limit cycle simple periodic
signals. Now we show the case of an infinite spectrum of
frequency. In this experiment we use as a teaching signal a
square signal, which contains an infinite number of frequency
components. We try to learn this signal with the network of
oscillators. We made two experiments, with several numbers
of oscillators, in order to show that the network can well
approximate a signal with an infinite number of frequency
components with a finite number of oscillators. In these
experiments we also show that the more oscillators we have,
the more accurate the learning is. The result of the experiments
can be seen in Figure 10.

In these experiments, we clearly see that the network of
oscillators can learn a good approximation of the teaching
signal with a finite number of oscillators. Furthermore, we note
that the higher number of oscillators, the better the learning
is.

IV. CONCLUSION

In this contribution, we showed how we can construct a
network of coupled oscillators able to learn periodic signals.
We first showed the principle of adaptive frequency oscillators,
then we presented a network able to learn the frequency
components and the amplitudes of any periodic input signal.
The number of frequency components in the teaching signal
determines the number of oscillators needed in the network.
For the case of continuous frequency spectrum, we showed
that it was possible to learn a good approximation of the
signal. Furthermore we showed how the correct phase relations
between all the oscillators could be kept by an appropriate
coupling of the oscillators. The resulting network of oscillators
is then stable against perturbations, it means the network
has encoded the teaching periodic signal into a limit cycle.
The only limitation of this stable network is that stable
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Fig. 10. This figure shows the result of learning of a square signal for 2
networks with different numbers of oscillators. In the upper graph, we see
the teaching signal, the middle graph (Q2jearned) Shows the result of learning
with 10 oscillators whose initial frequencies are uniformly distributed between
[10,300]. The lower graph shows the result of learning with 5 oscillators with
initial frequencies uniformly distributed between [10,100]. For the 2 trained
networks we set e=2, t=2, y=8and n=0.5.

coupling can be defined only when the lowest frequency of
the oscillators also defines the frequency of the signal to learn.
Although the solution we presented can learn any periodic
input signal, we cannot guarantee the stability of the resulting
network of oscillators if the lowest frequency of the oscillators
is different from the frequency of the teaching signal.

In a second part, we showed numerical experiments that
proved the learning abilities of the network. We showed that
even noisy input signals could be learned. Furthermore, we
showed that the encoded pattern was stable against pertur-
bations and could be smoothly modulated in amplitude or
frequency, making such a network interesting for controlling
trajectories in autonomous robots.

Moreover, it becomes easy to learn multi-dimensional pe-
riodic signals. We can imagine having a network of coupled
adaptive oscillators where the teaching signal for each oscilla-
tor would come from several sources and with several output
signals. The frequency and amplitude would automatically
adapt to learn the multi-dimensional signals and the general
coupling structure of the network will assure stability. This
ability would be of great interest for controlling multi-DOF
robots.

In our future research, we will mainly focus on designing a
more general coupling scheme in the network to have stable
limit cycles for any periodic teaching signal. Then we will
show the applicability of such a network to the control of
multi-DOF robots.
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