
The essence of P2P: A reference architecture for overlay networks∗

Karl Aberer†, Luc Onana Alima‡, Ali Ghodsi§, Sarunas Girdzijauskas†, Seif Haridi§, Manfred Hauswirth†

†Ecole Polytechnique Fédérale de
Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

‡Université de Mons-Hainaut
(UMH)

B-7000 Mons, Belgique

§Swedish Institute of Computer
Science (KTH)

S-164 29 Kista, Sweden

Abstract

The success of the P2P idea has created a huge diversity
of approaches, among which overlay networks, for example,
Gnutella, Kazaa, Chord, Pastry, Tapestry, P-Grid, or DKS,
have received specific attention from both developers and
researchers. A wide variety of algorithms, data structures,
and architectures have been proposed. The terminologies
and abstractions used, however, have become quite incon-
sistent since the P2P paradigm has attracted people from
many different communities, e.g., networking, databases,
distributed systems, graph theory, complexity theory, biol-
ogy, etc. In this paper we propose a reference model for
overlay networks which is capable of modeling different ap-
proaches in this domain in a generic manner. It is intended
to allow researchers and users to assess the properties of
concrete systems, to establish a common vocabulary for sci-
entific discussion, to facilitate the qualitative comparison of
the systems, and to serve as the basis for defining a stan-
dardized API to make overlay networks interoperable.

1 Introduction

P2P is not a new paradigm and in fact has already been
applied in the original Internet’s design, for example, in ba-
sic Internet routing or in applications such as Usenet News.
What is new, however, is its broad application to all system
layers and to new application domains. Most prominently,
the P2P approach has been applied for resource location
by building so-called overlay networks, such as Gnutella,
Freenet, Pastry, P-Grid, or DKS, on top of a physical net-
work. Basically all these overlay networks provide a re-
source location service supporting application specific iden-

∗The work presented in this paper was supported (in part) by the Na-
tional Competence Center in Research on Mobile Information and Com-
munication Systems (NCCR-MICS), a center supported by the Swiss
National Science Foundation under grant number 5005-67322 and was
(partly) carried out in the framework of the EPFL Center for Global Com-
puting and supported by the Swiss National Funding Agency OFES as part
of the European project Evergrow No 001935.

tifiers. On top of this resource location service different ap-
plication services can be realized, such as data management
(search, insert, update, etc.). In principle, distributed appli-
cation services could also use directly the physical network-
ing layer for managing their resources, but using an over-
lay network has the advantage of supporting application-
specific identifiers and semantic routing, and offers the pos-
sibility to provide additional, generic services for support-
ing network maintenance, authentication, trust, etc., all of
which would be very hard to integrate into and support at
the networking layer. The introduction of overlay networks
and self-management at the service-level are probably the
essential innovations of P2P systems.

A wide range of algorithms, structures, and architec-
tures for overlay networks have been proposed already, inte-
grating knowledge from many different communities, such
as networking, distributed systems, databases, graph the-
ory, agent systems, complex sytems, etc. The terminolo-
gies and abstractions used, however, are quite inconsistent,
which makes it very hard to assess and compare differ-
ent approaches. Only a few relevant attempts to remedy
this situation exist so far. For example, JXTA [10] de-
fines a 3-layer architecture (kernel, services, application),
XML-based communication protocols, and basic abstrac-
tions, such as peer groups, pipes, and advertisements. JXTA
intends to provide a uniform programming platform for P2P
applications and facilitate interoperability. It provides well-
structured APIs and a clear separation of concerns in its ar-
chitecture but does not mean to describe the structural and
functional properties of overlay networks as we do in this
paper. Our work and JXTA are thus complementary.

Dabek et al. [7] propose a common API for structured
overlays, basically for CAN [16], Chord [18], Pastry [17],
and Tapestry[20]. The API only takes into account struc-
tured overlays and the used abstraction are at a very low
level (C programming interface level), so that using it as a
general architecture for modeling overlay networks is not
possible.

In this paper we thus propose a reference model for over-
lay networks which is capable of modeling all existing ap-

proaches in this domain. We focus on decentralized over-
lay networks such as Gnutella [6], Freenet [5], CAN [16],
Chord [18], P-Grid [1], DKS [4], etc., as this class is the
most relevant one. From a modeling point of view, central-
ized P2P systems, such as Napster, are simply client-server
architectures where the participants can directly communi-
cate after a discovery phase (similar to a DNS name lookup
and then contacting a web server, for example). Hierar-
chical P2P systems such as Kazaa, basically consist of a
decentralized overlay network of super-peers for locating
resources that are used by the normal peers. Thus these
system can be modeled by our proposed model with an ad-
ditional client-server step when contacting a super-peer.

Our model is intended to support the assessment of sys-
tem properties, establishes a common vocabulary, facilitates
the qualitative comparison of the systems, and can serve
as the basis for defining a standardized API to make over-
lay networks interoperable. The major contributions of our
model are (1) a conceptual model capturing the concept of
embedding a graph into a virtual identifier space, which
is fundamental for all overlay networks and (2) a well-
defined peer architecture comprising user-level interfaces
for applications wanting to use the overlay, interfaces for
intra-network communication among homogeneous peers,
and interfaces for cooperation among heterogeneous over-
lay networks.

2 Conceptual Model for Overlay Networks

In any overlay network a group of peers P provides ac-
cess to a set of resources R by mapping P and R to an
(application-specific) identifier space I using two functions
FP : P → I and FR : R → I. These mappings estab-
lish an association of resources to peers using a closeness
metric on the identifier space. To enable access from any
peer to any resource a logical network is built, i.e., a graph
is embedded into the identifier space. These basic concepts
of overlay networks are depicted in Figure 1.

Peers
Universe of overlays

Structuring strategy

Resources

Identifier space

FP

FR

Figure 1. Overlay network design decisions

Each specific overlay network is characterized by the de-
cisions made on the following six key design aspects:

1. choice of an identifier space
2. mapping of resources and peers to the identifier space
3. management of the identifier space by the peers
4. graph embedding (structure of the logical network)
5. routing strategy
6. maintenance strategy

In taking these design decisions the following key re-
quirements for overlay networks are addressed:

Efficiency: Routing should incur a minimum number of
overlay hops (with minimum “physical” distance) and the
bandwidth (number and size of messages) for constructing
and maintaining the overlay should be kept minimal.

Scalability: The concept of scalability includes many
aspects. We focus on numerical scalability, i.e., very large
numbers of participating peers without significant perfor-
mance degradation.

Self-organization: The lack of centralized control and
frequent changes in the set of participating peers requires a
certain degree of self-organization, i.e., in the presence of
churn the overlay network should self-reconfigure itself to-
wards stable configurations. This is a stabilization require-
ment as external intervention typically is not possible.

Fault-tolerance: Participating nodes and network links
can fail at any time. Still all resources should be accessible
from all peers. This is typically achieved by some form of
redundancy. This is also a stabilization requirement for the
same reason as above. Fault-tolerance implies that the par-
tial failure property of distributed systems [19] is satisfied,
i.e., even if parts of the overlay network cease operation, the
overlay network should still provides an acceptable service.

Cooperation: Overlay networks depend on the coopera-
tion of the participants, i.e., they have to trust that the peers
they interact with behave properly in respect to routing, ex-
change of index information, quality of service, etc.

In the following we will provide detailed formal specifi-
cations for these key design concepts of overlay networks
and discuss the issues related to the requirements listed
above.

2.1 Choice of Identifier Space

A central decision in designing an overlay network is the
selection of the virtual identifier space I which has to pos-
sess some closeness metric d : I × I → R, where R de-
notes the set of real numbers. d must satisfy properties 1–3
below and if possible should satisfy properties 4–5.

∀x, y ∈ I : d(x, y) ≥ 0 (1)
∀x ∈ I : d(x, x) = 0 (2)

∀x, y ∈ I : d(x, y) = 0 ⇒ x = y (3)
∀x, y ∈ I : d(x, y) = d(y, x) (4)

∀x, y, z ∈ I : d(x, z) ≤ d(x, y) + d(y, z) (5)
If d satisfies all the five properties then (I, d) is a metric

space. However, in many cases only the first three proper-

ties will be satisfied. In this case we call (I, d) a pseudo-
metric space.

The choice of the virtual identifier space is important for
several reasons:
• Addressing: The identifier space plays the role of an

address space used for identifying resources in the
overlay network. Each peer and resource in an over-
lay network receives a virtual identifier taken from I
(explicitly or implicitly).

• Scalability: To support very large systems, I has to
be very large. Through a mapping FP each peer with
a physical address in P is assigned a virtual identifier
from I. This is an application of the well-known prin-
ciple of indirection for achieving numerical scalability.

• Location-independence: The virtual identifier space
allows peers to communicate which each other irre-
spective of their actual physical location. This ad-
dresses physical address changes and enables mobility.

• Clustering of resources with peers: The closeness met-
ric d enables the clustering of resources with peers
based on proximity. This is discussed in detail in Sec-
tion 2.3.

• Message routing: Virtual identifiers and the closeness
metric d are essential for realizing efficient routing.

• Preservation of application semantics: As virtual
identifiers can be defined in an application-specific
way, application semantics, for example, “proximity”
of resources (clustering), can be preserved.

Examples: CAN [16] uses a Euclidean space with vir-
tual identifiers being coordinates in this space. The dis-
tance function d is the Euclidean distance. P-Grid [1] uses
a prefix-preserving hash function on strings, i.e.,

∀s1, s2 : s1 < s2 ⇒ h(s1) < h(s2)

(< denotes lexicographic order). Identifiers in P-Grid are
bit strings and d is defined as (for a k-bit identifier a and an
l-bit identifier b):

d(a, b) = min(|

k
∑

i=1

ai2
−i−

l
∑

i=1

bi2
−i| , 1−|

k
∑

i=1

ai2
−i−

l
∑

i=1

bi2
−i|)

while in Chord [18] and DKS [4] the identifier space is a
subset of the natural numbers of size N and

d(x, y) = (y − x) mod N.

2.2 Mapping to the Identifier Space

The mapping FP : P → I associates peers with a
unique virtual identifier from I. Different approaches can
be distinguished by the properties of the chosen functions
FP :

• Completeness: FP may be complete or partial. When
FP is partial, peers might (temporarily) not be associ-
ated with an identifier.

• Morphism: If no replication (for fault-tolerance) is re-
quired, FP will be one-to-one (injective), i.e., ∀p, q ∈
P : p 6= q ⇒ FP (p) 6= FP (q). However, the more
typical case is that the system uses replication and the
mapping is not injective.

• Dynamicity: FP can be either statically defined, e.g.,
by its physical address or other unique attributes, or
dynamically change over time. In order to simplify our
notations, in the following we will focus on the struc-
tural aspects and will not explicitly represent time-
dependency in our notations.

Additionally, FP may satisfy certain distributional prop-
erties, for example, that the range of values of FP follows a
certain distribution in space I, e.g., uniform. Such proper-
ties may then be exploited, for example, for load balancing.
The properties FP satisfies will be denoted as CFP

in the
following.

The mapping FR : R → I associates resources with
identifiers from I. The choice of this mapping can be crit-
ical for the application using the resources. Typically “se-
mantic closeness” of resources, e.g., resources frequently
requested jointly, can be translated into closeness of identi-
fiers. Thus the possibility of using application-specific iden-
tifiers is taking advantage of this. If the resources should be
identified uniquely, FR has to be injective. The distribution
of identifiers generated by FR has an important impact on
the load-balancing properties of the overlay network em-
bedded into the space I.

Examples: A standard example for FP and FR is a uni-
form hashing function as, e.g., used by Chord [18]. This
will generate a uniform distribution of peers on the identifier
space and implicitly provides load-balancing as also the re-
source identifiers are uniformly distributed. However, clus-
tering of information will not be possible and thus higher-
level search predicates such as range queries will be expen-
sive to process. P-Grid’s mapping functions on the other
hand supports clustering but thus requires an explicit load-
balancing strategy.

2.3 Management of the Identifier Space

At any point in time, I is managed by the set of current
peers P . The responsibility for peers for specific identifiers
is captured by a function M : I → 2P , which associates
with each identifier of a resource r, i = FR(r) ∈ I, the
set of peers that are managing r. Through M, each peer
p is assigned responsibility for the set M−1(p) of identi-
fiers. Locating a resource r corresponds to finding a peer in
M(FR(r)). The lookup operation of overlay networks typ-
ically provides an implementation of M through routing.
We may identify various basic properties for M:

• Completeness: M may be complete or partial. When
M is incomplete, identifiers might (temporarily) not
be associated with a peer. Typically the mapping will
be complete, such that each point of the identifier space
is under the responsibility of some peers, i.e., ∀i ∈ I :
∃p ∈ P : p ∈ M(i)

• Cardinality: To provide fault-tolerance, M typically
contains more than one element, i.e., a set of peers is
responsible for managing each identifier.

• M induced by proximity: A standard way to specify
M is that identifiers are associated with their closest
peers, i.e.,

p ∈ M(i) ⇒ d(FP (p), i) = minq∈Pd(FP (q), i).

• Dynamicity: M typically changes dynamically as the
set of peers and their mapping to the identifier space
changes.

• Uniformity of replication: The cardinality of M
(which corresponds to the degree of replication) may
be constant or uniformly distributed to ensure com-
parable availability of resources. Non-uniform dis-
tributions can be used to adapt the availability of re-
sources to application requirements, e.g., popularity of
resources.

In the following, CM denotes the properties M satisfies.
Examples: In Chord a peer with virtual identifier a is re-
sponsible for the interval (predecessor(a), a], i.e.,

min{FP (a) 	 FP (b)|b ∈ P} ⊕ FP (b).

In P-Grid a peer with a k-bit path a is responsible for all
identifiers in the interval

[

k
∑

i=1

ai2
−i , 2−k +

k
∑

i=1

ai2
−i

)

.

2.4 Graph Embedding

An overlay network can be modeled as a directed graph,
G = (P, E), where P denotes the set of vertices (i.e., peers)
and E denotes the set of edges. Due to the dynamics in
overlay networks, G is time-dependent, but as before we
will not explicitly denote this. By virtue of this graph we
define a neighborhood relationship N : P → 2P , such that
for a given peer p, N (p) is the set of peers with which peer
p maintains a connection, i.e., there is a directed edge (p, q)
in E for q ∈ N (p).

The properties of the overlay network relate to proper-
ties of the directed graph generated by N and to the proper-
ties of the embedding of the graph into the (pseudo-) metric
space (I, d). Purely structural properties of the graph can
be further distinguished into local and global properties, i.e.,
whether they relate to local characteristics of graph nodes or
to global characteristics of the graph. Typical global prop-
erties of the graph are the following:

• Uniqueness: For deterministic systems, e.g., Chord,
DKS, for a given set P and mapping FP only one valid
network N exists. In randomized systems such as P-
Grid and randomized Chord, multiple valid N are pos-
sible.

• Graph diameter: A small diameter provides lower
bounds on the latency of routing in the network.

• Connectivity: Some overlay network approaches may
require that the overlay graph is connected at any time.

• Distributional properties: These are typically distribu-
tional properties of node degrees. A frequently occur-
ring class of graphs are power-law graphs [14]. Other
distributional properties relate to the clustering coeffi-
cient of the graph.

Typical local properties of the graph include:
• Minimal out-degree: This property is beneficial to en-

sure fault-tolerance, when many neighbors fail.
• Maximal out-degree: This property is relevant for en-

suring bounded maintenance cost for connections to
other peers.

• Distributional properties of in-degree: These are rele-
vant for load balancing in the message forwarding.

More complex properties refer to relationships of the
graph structure to the distance function. These relationships
are tightly intertwined with the strategy for efficient routing
in an overlay network. Typical examples of such constraints
are:
• Local connectivity: This property ensures that peers

are connected to some specific subset of their immedi-
ate neighbors. An example of such a requirement for a
given peer p would be

∀q ∈ P : d(FP (p), FP (q)) < dmin ⇒ q ∈ N (p).

• Long-range connectivity: Many overlay network de-
signs are structurally similar to small-world graphs as
introduced by Kleinberg [12]. These graphs are con-
structed such that long range connections satisfy the
condition

P [q ∈ N (p)] ∝
1

d(FP (p), FP (q))−d
,

where d is the dimensionality of the identifier space.
Many overlay networks satisfy more strict variations
of this condition.

The properties N satisfies are denoted by CN in the fol-
lowing. At this point we are able to completely characterize
the structural aspects of overlay networks by the following
definition:

Definition. The structure of an overlay network O ∈ O
for a set of peers P is given by

O = (I, d, FP , CFP
,M, CM,N , CN).

2.5 Routing Strategy

The basic service an overlay network provides is to route
a request for an identifier i to a peer pr responsible for it,
i.e., pr ∈ M(i). Routing is a distributed process using the
overlay network. We model it by asynchronous message
passing: route(p, i,m) forwards a message m to a peer p

responsible for i. A routing strategy can be described by a
potentially non-deterministic function R : P × I → 2P ,
which selects at a given peer p with neighborhood N (p) for
a target identifier i the (set of) next peers R(p, i) ∈ N (p),
to which the message is forwarded. In structured overlay
networks routing typically is greedy, i.e.,

d(i, FP (q)) < d(i, FP (p))

for q ∈ R(p, i). Some systems satisfy weaker conditions,
e.g., in Pastry,

d(i, FP (R(p, i))) ≤ d(i, FP (p)).

In unstructured overlay networks the set R(p, i) may con-
tain several peers.

Properties of routing algorithms are characterized by
their associated cost measures, such as latency, number of
hops, and probability of successful routing. Given a rout-
ing algorithm together with an overlay network structure
the properties regarding the expected usage of the peers’
resources can be analyzed.

2.6 Maintenance Strategy

Participation of peers in an overlay network dynamically
changes over time. Each peer can freely decide to join or
leave an overlay network at any time. These changes, re-
ferred to as churn in the literature, can happen quite fre-
quently. To maintain the structural integrity of an overlay
network a maintenance strategy is required, which compen-
sates for changes to the network structure due to peers going
offline or failure of network connections.

In all overlay networks, joining the network is done ex-
plicitly by a join operation, whereas leaving typically is im-
plicit as peers may simply go offline or crash or their net-
work connection may drop. Regardless whether peers leave
gracefully or not, changes in the participation in an overlay
network typically require the application of a maintenance
strategy. Aside from access control aspects, i.e., who is al-
lowed to participate, this basically requires to repair rout-
ing tables which have been invalidated due to churn, i.e.,
to maintain the connectivity of the underlying graph [8].
Maintenance strategies can be classified [2] into proactive
correction (PC) using periodic probing or heartbeats to re-
pair inconsistencies, and reactive mechanisms, with the sub-
categories correction on use (CoU), e.g., P-Grid and DKS,
correction on failure (CoF), e.g., P-Grid, and correction on
change (CoC), e.g., Chord.

The practical usability of an overlay network critically
depends on the efficiency of the maintenance strategy. The
goal is to maintain a “sufficient” level of consistency while
minimizing effort. Since a dynamically evolving overlay
network on top of a dynamically changing physical network
is a complex dynamical system, the goal is to arrive at a
stable dynamic equilibrium for a variety of conditions while
guaranteeing successful routing.

2.7 Other Properties

There are a number of further properties which we can
only briefly mention here due to space limitations.

Constraints, such as those introduced in the previous sec-
tions, can be guaranteed at different levels of strictness: If
the constraints are valid all the time, they are invariants of
the system; if the constraints hold eventually, they may be
satisfied after self-stabilization of the system induced by
changes to the systems state; if the constraints hold prob-
abilistically, they are satisfied with a specific probability ei-
ther all the time or eventually.

By taking into account the physical characteristics of
peers, such as their network location, their storage capac-
ity, etc., additional properties can be specified which are in
particular useful to obtain insights and control over the per-
formance characteristics of the overlay network, for exam-
ple, efficiency of routing and reliability of the network. An
important example of such a property is locality of routing.
A possible formulation of such a property is a constraint on
the stretch introduced by the overlay network, i.e., that the
physical distance of the path traversed to reach a node does
not exceed the distance of the shortest physical path by a
given stretch factor.

3 Reference architecture

From an application-oriented perspective, any middle-
ware technology—and we see P2P systems and specifically
overlay networks as a form of middleware—should provide
powerful and easy to use abstractions that hide implementa-
tion details as much as possible from the user/implementer
while offering enough control and access options to actu-
ally meet application requirements. Additionally, the ab-
stractions should be defined in a way that the concrete in-
frastructure implementing the middleware functionality can
be replaced without requiring to rewrite code.

Given these goals, we see P2P systems based on over-
lay networks as layered systems as depicted in in Figure 2
(for a single node). From a user’s perspective a P2P sys-
tem facilitates to realize a specific application by sharing
resources with other users and using services provided by
the P2P layer. One particularly important example of such
a service is P2P data storage, which allows to insert, search,
and access data items. This service as well as the applica-
tions take advantage of the basic resource location service

provided by the P2P basic layer that implements the overlay
network.

P2P basic
P2P storage

Application

Network (TCP/IP)

Figure 2. Layered architecture view

This simple layered architecture supports separation of
concern between the application layer, the generic services
of a P2P system and the basic overlay network of a P2P sys-
tem. It facilitates to replace a specific implementation of a
P2P system, or selected services and layers, that an appli-
cation is using by alternative implementations. In order to
support this form of modularity it is important to provide a
standardized specification of the interfaces among the lay-
ers. In Figure 3 we provide a class diagram that provides
the core of such an interface specification. It is based on the
conceptual model we have introduced in Section 2.

���������	
��	���
�����

��������	�����	�

��	��������������		��	�	�	��	

��������

������������������	��	��������	�����������

������������������	��	��������	������������������	��	��������	

������������������	��	 ��		�������������

������������������	���	�����	���������	�����������������		��!

������������������ �������������	������������		��

�"�����������������

��	
����	�

#

$

$ #

%�&���'�����	�����	�!���� �����	�����	�(��������

�
�	������������

��������	�����	�

���������	
��	���
�����

������
	������)���	��

����������	��

�
�	������

*������������	�����
���	+�
������	����	�	������������

#+���&'!� (�,�-

.+��&'!�'(�/�-

0+�������&'!� (�/�-�����	����'�/�

1��������������� �

2+��&'!�3(�4��&'!� (�%��& !�3(��

5+��&'!� (�/��& !�'(�

#

$

����������		
����		

	�	
	��	�

��	��	��

������������������	�����	
�����		
����

�
���	�����������	�����	
������	����	����	����	�

�
���	
���	�������
������ ������	�����	
������	����	����	����	�

�
���	 �
	�����������	����	����	����	�

��	�!�����		
������		

	�	
	��	

��	�"	��#$�
�������		

	�	
	��	%&

6���	����	7

������
����	�������

��	�	�	����������	����������	��

����	
�����������	����������	��

������	�����	'���������	������������������	��

��	�
�#����(�	
)���*�	
)����������	�%&

6���	����	7

�������������	�������

����

6�	���	�7

6�	���	�7

#$

Figure 3. Conceptual decomposition

Overlay networks are based on the embedding of a graph
into an Identifier Space which provides a closeness metric.
Each Peer is mapped into this space, i.e., it is assigned an
Identifier from the virtual identifier space, which defines
its current position in this space and (indirectly) the sub-
set of identifiers the peer is responsible for as described
in Sections 2.2 and 2.3. Note that a peer’s position can
change over time. How the partitioning of the identifier
space is done, i.e., how a node is assigned a coordinate and
responsibility, is subject to the specific overlay approach.
A Peer is uniquely identified by an immutable name (im-
mutableName) and maintains a neighborhood (neighbors),
i.e., references to other peers (PeerReference) for forward-
ing. Each PeerReference includes the referenced peer’s im-
mutable name, its position in the identifier space, i.e., re-
sponsibility, and physical network address (IP address or

symbolic name). As this information changes over time,
each peer has to apply a maintenance strategy as discussed
in Section 2.6 to have a consistent view (depending on the
specific overlay network). The number of neighbors a peer
maintains and the strategy how neighbors are selected is de-
fined by the Constraints of the overlay network which de-
pend on properties of the identifier-resource and identifier-
peer association strategies, the graph embedded in the iden-
tifier space, and its constraints, etc.

As shown in in Figure 2, we distinguish two layers
of functionality. The basic layer (P2P Basic Interface)
provides the low-level operations which the overlay needs
to be able to function. Its main functionalities, besides
the mandatory join and optional leave operations, are the
lookup and route operations. The lookup function allows
an application to find a peer by its identifier to be able
to directly communicate with it (point-to-point), for exam-
ple, for transferring data items. The route operation, which
lookup typically builds on, allows the user to send a mes-
sage to any peer responsible for a given identifier. A mes-
sage can contain any data specified by the application, for
example, the data to be stored by the peer or a synchroniza-
tion request among replicas. routeToReplicas propagates a
given message to the set of peers responsible for the same
identifier. getLocalPeer returns the administrative informa-
tion about the local peer and getNeighbors provides the list
of neighbors of a peer, i.e., its routing table information.

The storage layer (P2P Storage Interface) builds on
these functionalities and provides the typical data manage-
ment functionalities of inserting, updating, deleting, and
querying data, that made the P2P paradigm popular. The
resources affected by the functions are specified via the
DataItem abstraction that includes the resource’s data and
the application-specific key(s) to be used by the storage
layer to generate a corresponding identifier, i.e., map the
data item to its position in the identifier space. This can then
be used by the basic layer to find the responsible peer(s) and
perform the requested operation. The DataItem set returned
by search includes both the application-specific keys and
the identifiers of the found resources.

We would like to emphasize that Figure 3 provides a min-
imal model, i.e., it provides what we identified as the mini-
mal common denominator for different overlay network ap-
proaches. All parts of the architecture can be (and in fact
are) extended by concrete systems. For example, each sys-
tem will typically have more structured message types. For
example, in Gnutella, as one of the simplest systems, a join
operation would mean the issuing of a Ping message which
has a simple structure holding a descriptor ID (to prevent
loops in the routing), a payload descriptor, a time-to-live
counter, a hop counter and a field defining the length of the
payload. Yet, extensions of our model are intuitive and sim-
ple: A concrete system can basically “subclass” and “ex-

tend” any of the components in Figure 3.

4 Interoperability

Up to now we have introduced a conceptual model and
abstract interfaces to capture the specific properties of a
given overlay network approach. In practice, multiple over-
lay networks will co-exist simultaneously in a physical net-
work, which raises issues of managing multiple overlay net-
works and interoperability.

We consider an overlay network as a group of peers P
that share the same specification of their specific overlay
network mechanisms. The sharing of this specification is a
problem of group management and can be done either ex-
plicitly or implicitly.

With an explicit management explicit group identifiers G
(e.g., URIs) are used to identify an overlay network and are
bound to a specific type of overlay network by a mapping
T : G → O, which associates the identifier with a specifi-
cation of an overlay network. We consider this as providing
the overlay network with a type (or schema in database par-
lance). Thus every peer joining a group g ∈ G obtains the
associated type information and adheres to the specification.
The issue of non-complying peers is related to security and
trust which we cannot elaborate further here. As a conse-
quence, joining an overlay network would only be possible
if the joining peer uses the same group identifier as the peers
of the network.

With implicit management a group of peers is considered
as participating in the same overlay network if they use the
same overlay network specification. Thus there is no global
knowledge on the existence of a specific overlay network,
but the network results from the cooperation of peers us-
ing the same specification. Thus when joining, a peer ob-
tains/shares the specification with the peer to which it joins.

Another interesting aspect of group management in an
overlay network is the degree of coupling. In tightly cou-
pled overlay network the overlay graph is at any time con-
nected. This implies that such an overlay network has to
be initiated by a single peer (that could, for example, de-
termine the identifier and specification of the network prop-
erties, when explicit group management is used). Chord is
an example of a tightly coupled overlay network. In loosely
coupled overlay networks different overlay graphs based on
the same specification (e.g., using implicit group manage-
ment) can evolve, merge, or split. Gnutella and P-Grid are
examples of loosely coupled overlay networks.

The approach to implicitly manage groups of peers par-
ticipating in the same overlay network suggests a more gen-
eral view of how groups of peers constructing overlay net-
works may work together. In order to interact, it is in fact
not necessary that the type of overlay network is exactly
the same, but it may be sufficient that the specifications are
compatible. This approach can be observed for some prac-

tical overlays systems, such as Gnutella. Multiple versions
of overlay protocols can work together, and different peers
may use different policies, e.g., with respect to network con-
nectivity.

For characterizing the possibilities of interoperability
among peers participating in different overlay networks O1

and O2, we can systematically compare the specifications
of the networks. We assume that at the level of protocols,
O1 and O2 are compatible by following the API defined in
Section 3 and using compatible protocol messages. This is
a purely syntactic agreement. The classification of interop-
erability follows the concepts described in Section 2 and we
can distinguish the following levels of structural interoper-
ability:
• Compatible Identifiers: The identifier spaces I1 and I2

are the same or can be related to each other by applying
a transformation. Then for identifiers in i ∈ I1 ∩ I2,
peers from both O1 and O2 can route messages to the
resources identified by i. Routing would be processed
independently in O1 and O2. Thus peers can play the
role of gateways among different overlay networks.

• Compatible Identifier Spaces: If additionally the dis-
tance functions (possibly after applying a transforma-
tion) are compatible, peers from O1 may use peers
from O2 (and vice versa) and their knowledge on
neighbors to integrate them into their own routing ta-
bles.

• Compatible Structures: If additionally the structural
constraints of two overlay networks are in a subsump-
tion relationship, i.e., one of the overlay networks is
more constrained but compatible with the more general
overlay network, peers of the more constrained net-
work may participate as peers in the less constrained
network by adopting the routing and maintenance al-
gorithms of the less constrained network.

An important open issue, when exploiting these forms
of structural interoperability, are the effects on the perfor-
mance of the routing and maintenance mechanisms and the
impact on certain structural properties of the overlay net-
works, such as distributional properties. These questions
are closely related to the study of overlay networks built by
peers with highly heterogeneous resources, a topic which
has been studied only to a very limited degree so far.

5 Validation of the reference architecture

In this section we will briefly describe key aspects
of a representative set of overlay networks—Chord [18],
DKS [4], LAND [3], P-Grid [1], Pastry [17], Sym-
phony [13], Freenet [5], and Gnutella [6]—in terms of our
architecture to demonstrate its validity. Additionally, we
provide a brief qualitative comparison of the systems.

5.1 Identifier Space

The identifier spaces are very similar for all logarithmic-
style overlay networks (LAND, P-Grid, Chord, Pastry,
Symphony, etc.). In these approaches identifiers are chosen
from an alphabet with radix b, e.g., b = 2 for P-Grid, Chord,
and Symphony, b = 16 for Pastry. Some of them limit the
identifier length, e.g., Pastry uses 128-bit, Chord and DKS
use 160-bit length identifiers, whereas in P-Grid identifiers
can be of arbitrary length. A similar distance function is
shared by all of these overlays, though there are some sub-
tle differences. In P-Grid, LAND, Pastry, and Symphony
the distance d(u, v) of two identifiers u (of length k) and v

(of length l) is

min

(∣

∣

∣

∣

∣

k
∑

i=1

uib
−i −

l
∑

i=1

vib
−i

∣

∣

∣

∣

∣

, 1 −

∣

∣

∣

∣

∣

k
∑

i=1

uib
−i −

l
∑

i=1

vib
−i

∣

∣

∣

∣

∣

)

.

Note that in Pastry’s case k = l, and for these systems
d(u, v) is symmetric as d(u, v) = d(v, u). For example, in
P-Grid,

d(“0000”, “10”) = d(“10”, “0000”) = 0.5.

The identifier space in Chord is not symmetric, i.e.,
d(u, v) 6= d(v, u). d(u, v) can be defined as

((

k
∑

i=1

vi2
−i −

k
∑

i=1

ui2
−i

)

+ 1

)

mod 1.

Thus
d(“001”, “111”) = 0.75,

but
d(“111”, “001”) = 0.25.

In Freenet the situation is slightly different. Due to the
way Freenet identifies nodes, it uses an r-dimensional 160-
bit identifier space. r depends on the data items a peer
stores, but usually r = 50. d(u, v) between two Freenet
peers is the Euclidean distance in this multidimensional
space.

5.2 Mapping to the Identifier Space

Mapping of peers: The key difference among the over-
lays with respect to this mapping is whether the virtual iden-
tifier is assigned to a peer randomly or the peer adopts the
identifier depending on environment conditions, e.g., de-
pending on the data a peer and its neighboring peers store.
In Chord, LAND, Pastry, and Symphony the virtual identi-
fier is generated using some random function and assigned
to a peer upon joining the overlay and remains stable. In
DKS identifiers can be mapped order-preservingly based on
their domain name, e.g., lexicographic ordering, to ensure

that nodes in the same organizational domain are logically
close in the identifier space.

Most of the logarithmic-style overlay approaches like
Chord, LAND, Pastry, Symphony, or P-Grid have a one-
dimensional identifier space. In Chord, LAND, and Pas-
try identifiers are assigned by hashing the node’s IP ad-
dress using SHA-1. In contrast, in P-Grid each peer ini-
tially is responsible for the whole identifier space and has
an empty identifier which grows bit by bit in the lifetime of
the peer depending on which other peers it encounters and
what type of data they and the peer itself store. Similarly
in Freenet, each node assigns itself an identifier vector of
size r, consisting of r 160-bit elements representing the r

identifiers of data items the peer stores. Additionally, the
identifier of a Freenet peer changes during its lifetime de-
pending on the queries it handles. Thus the identifiers in
P-Grid and Freenet dynamically change, whereas in Chord,
LAND, Pastry, and Symphony they are static.

Mapping of resources: Mapping of resources (data
items) is done similarly to mapping peers. Usually it
is done by hashing a data key, e.g., the filename, with
SHA-1 (Chord, LAND, Pastry, Freenet). While this im-
plicitly distributes the assigned identifiers uniformly in the
identifier space and thus provides a simple load-balancing
mechanism, it destroys the semantics of keys, e.g., their
application-specific clustering, which can be exploited to
provide efficient data access. To prevent this, P-Grid, for
example, uses a prefix-preserving hash function, i.e., u <

v ⇒ h(u) < h(v). This has advantages in query processing
but requires an additional and more complex load-balancing
strategy. It is crucial that this mapping of resources is deter-
ministic, static, and globally known.

5.3 Management of Identifier Space

In P-Grid each peer is responsible for resource identi-
fiers that share the largest common prefix with the peer’s
identifier, i.e., a resource identifier is managed by the peer
with the closest identifier in terms of P-Grid’s distance func-
tion. For example, peer “0011” is responsible for resource
identifier “001110101”, if no peer with a longer common
prefix exists. The situation in Freenet is very similar: Each
peer is responsible for the resource identifiers which are nu-
merically closest to one of the peer’s elements in its vector
identifier. Also in LAND, Pastry, and Symphony a simi-
lar condition applies. Data items are managed by the peer
with the closest identifier. For example, identifier “2A83”
will be managed by peer “2A84” if no peers “2A82” and
“2A83” exist. As Chord’s and DKS’s identifier spaces are
asymmetric, the situation is slightly different. A peer is re-
sponsible for all identifiers in the interval between its own
identifier and the identifier of its predecessor on the ring.
In all these approaches the responsibility of a peer may dy-
namically change due to arrivals or departures of peers in

the overlay.

5.4 Graph Embedding

It has already been shown that peers cooperating in
Freenet evolve the graph into a small-world graph. For
logarithmic-style overlay approaches, [9] shows that these
approaches form graphs according to Kleinberg’s small-
world principles [12]. It is proven that such graphs belong
to the special class of “routing efficient” small-world net-
works where decentralized, greedy search algorithms pro-
vide the best performance. Therefore, conceptually all of
these approaches build similar small-world graphs with cer-
tain constraints for each case. E.g., Symphony by its na-
ture of construction forms a small-world graph. In the other
logarithmic-style overlay cases each peer u views the iden-
tifier space as partitioned in log (N) partitions where each
partition is b times bigger than the previous one (b is the
radix of the identifier alphabet). The routing table of u in
such systems contains logb (N) links to some nodes from
each partition. In Chord’s case the chosen node will be
the one with the smallest identifier of the given partition,
while Pastry and P-Grid use any random node in the parti-
tion, which is a more relaxed constraint.

5.5 Gnutella

Gnutella’s underlying paradigm has major conceptual
differences compared to the structured overlay systems de-
scribed above. Despite its simplicity, the description of
Gnutella is not trivial. On the surface, it may seem that
Gnutella has no identifier space and no mappings are done.
But then it would be impossible to describe Gnutella as a
graph embedded in an identifier space. Nevertheless, we
can assume that peers in Gnutella exist in an Euclidean
identifier space R and each peer assigns itself a random
identifier i ∈ R. Then we assume that each peer is responsi-
ble for the whole identifier space and therefore it is not nec-
essary to map resources to the identifier space. Addition-
ally, each peer chooses four random neighbors. Given such
conditions and Gnutella’s routing and maintenance strate-
gies, the peers form a small-world graph in the identifier
space. As this graph has a very low diameter of approxi-
mately log (N), constrained flooding for search works ef-
ficiently in terms of latency. This shows that also Gnutella
fits our conceptual model of overlay networks.

6 Related Work

Although a large number of overlay networks have been
devised, only very few works on unifying architectures ex-
ist. The closest ones, JXTA [10] and Dabek et al. [7]
have already been discussed in the introduction. In a re-
cent work the structural properties of a subclass of overlay

networks have been characterized by using algebraic meth-
ods (Cayley graphs) [15]. This work is complementary as
it could be used to formulate more specific constraints on
the structure of overlay networks within our architectural
framework. In [11] classifications for structured overlay
networks, e.g., deterministic and randomized networks, are
introduced. These classifications correspond to different
constraints that we can capture in our conceptual model.
To best of our knowledge, no other proposals for an overlay
network reference architecture exist.

7 Future Work

The reference architecture as presented so far focuses on
the most relevant functional and non-functional properties
of overlay networks. However, there are some design as-
pects of overlay networks which we could not discuss in
detail due to space constraints.

As already mentioned in Section 2, overlay networks
highly depend on the proper cooperation of their partici-
pants, i.e., participants have to be trusted to perform non-
maliciously, route correctly, return unaltered data, etc. This
is a key assumption underlying all overlay networks. In
each approach a minimum percentage of the peer popula-
tion has to be trustworthy for the system to function prop-
erly and there are significant differences in the way how
overlays handle trust, i.e., they are vulnerable to different
extents. A number of approaches to secure routing and as-
sessing the reputation of peers exist already but have only
been integrated into current overlay networks to a limited
extent. As part of our future work we will detail our archi-
tecture in this respect to come up with a systematic model
to describe and classify trust and reputation approaches in
current overlay networks.

Additionally, there are some areas which require further
research to extend the applicability of our reference archi-
tecture. At the moment we have validated our reference ar-
chitecture against “classical” overlay approaches and some
recent systems. It will be part of our future work to de-
scribe a larger number of systems in terms of our architec-
ture and include also more of the most recent systems to
further validate it. This will also include qualitative com-
parisons of existing approaches to describe in which as-
pects the systems differ and which settings they cover best.
We are confident that the architecture will only require mi-
nor adjustments as most recent system are either variants
of “classical” approaches or focus on one specific property,
for example, BitTorrent which focuses mainly on efficient
distribution while putting other P2P aspects more into the
background.

So far our model is primarily targeted at understanding
and analyzing overlay networks. An interesting related as-
pect, however, is to investigate whether and how our model
can be applied to detect design weaknesses and therefore

might be used to improve specific systems or may even en-
able us to provide general suggestions for improvements.

Another line of future efforts will deal with providing a
reference implementation of our architecture. Besides be-
ing applicable as an introduction to the P2P paradigm and
being usable for classification purposes, this implementa-
tion and an architecture simulator would then be a platform
which researchers could use to plug in new approaches or
test variants of existing approaches or would be able to un-
derstand the effects of certain system and environmental
parameters in experiments and validate the performance of
their changes against the reference architecture. As a first
step in this direction we have already changed the imple-
mentation of some overlay approaches to match our refer-
ence architecture and have defined a reference API to enable
interoperability among different overlay networks.

8 Conclusions

Based on a stringent analysis of current overlay net-
works, we discussed and formally described the key design
aspects in this domain. We then used our assessments to
define a reference architecture for overlay networks specif-
ically addressing API and interoperability aspects. To the
best of our knowledge this is the first reference architec-
ture for overlay networks which includes a formal codifica-
tion and definition of all design aspects. Previous attempts
have focused on high-level component aspects or on low-
level API issues or on the comparison of functionalities, but
none of these works has properly addressed the “internals”
of overlay networks in a formal way so far. To validate
the correctness and general applicability of our approach we
applied it to model a representative set of overlay networks.
Our reference architecture establishes a standardized vocab-
ulary and facilitates the assessment of properties of overlays
for qualitative comparison and can serve as the basis for
the definition of a standardized API. A standardized API
backed up by well-founded abstractions as presented in this
paper will enable fine-grained interoperability among het-
erogeneous overlay networks which was one of our primary
goals in the definition of the architecture. As a first step in
this direction we have already changed the implementation
of some overlay approaches to match our reference archi-
tecture and have defined a reference API which is already
being applied in three EU projects to enable interoperability
among different overlay networks.

References

[1] K. Aberer. P-Grid: A self-organizing access structure for
P2P information systems. In Sixth International Conference
on Cooperative Information Systems (CoopIS), 2001.

[2] K. Aberer, A. Datta, and M. Hauswirth. Route maintenance
overheads in DHT overlays. In 6th Workshop on Distributed
Data and Structures (WDAS), 2004.

[3] I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch
(1+ε) Locality Aware Networks for DHTs. In ACM-SIAM
Symposium on Discrete Algorithms (SODA 2004), 2004.

[4] L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi.
DKS(N,k,f): A Family of Low Communication, Scalable and
Fault-Tolerant Infrastructures for P2P Applications. In 3rd
IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID), 2003.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A Distributed Anonymous Information Storage and Retrieval
System. In Designing Privacy Enhancing Technologies: In-
ternational Workshop on Design Issues in Anonymity and
Unobservability, number 2009 in LNCS, 2001.

[6] The Gnutella Protocol Specification v0.4 (Document Re-
vision 1.2), June 15 2001. http://www9.limewire.com/
developer/gnutella protocol 0.4.pdf.

[7] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica.
Towards a Common API for Structured Peer-to-Peer Over-
lays. In IPTPS, 2003.

[8] A. Ghodsi, L. O. Alima, and S. Haridi. Low-Bandwidth
Topology Maintenance for Robustness in Structured Overlay
Networks. In HICSS, 2005.

[9] S. Girdzijauskas, A. Datta, and K. Aberer. On Small-World
Graphs in Non-uniformly Distributed Key Spaces. In 1st
IEEE International Workshop on Networking Meets Data-
bases (NetDB), 2005.

[10] L. Gong. JXTA: A Network Programming Environment.
IEEE Internet Computing, 5(3):88–95, May/June 2001.

[11] K. Gummadi, R. Gummadi, S. Ratnasamy, S. Shenker, and
I. Stoica. The Impact of DHT Routing Geometry on Re-
silience and Proximity. In ACM SIGCOMM, 2003.

[12] J. Kleinberg. The Small-World Phenomenon: An Algorith-
mic Perspective. In ACM Symposium on the Theory of Com-
puting (STOC), 2000.

[13] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Dis-
tributed Hashing in a Small World. In 4th USENIX Sympo-
sium on Internet Technologies and Systems (USITS), 2003.

[14] M. Mitzenmacher. A Brief History of Generative Models
for Power Law and Lognormal Distributions. Draft man-
uscript. http://www.eecs.harvard.edu/∼michaelm/postscripts/
tempim1.ps, 2005.

[15] C. Qu, W. Nejdl, and M. Kriesell. Cayley DHTs - A Group-
Theoretic Framework for Analyzing DHTs Based on Cayley
Graphs. In International Symposium on Parallel and Distrib-
uted Processing and Applications (ISPA), 2004.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
ACM SIGCOMM, 2001.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), 2001.

[18] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A Scalable Peer-To-Peer Lookup Service for
Internet Applications. In ACM SIGCOMM, 2001.

[19] G. Tel. Introduction to Distributed Algorithms. Cambridge
University Press, 1994.

[20] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and rout-
ing. Technical Report UCB/CSD-01-1141, UC Berkeley,
2001.

