
Adaptive Parallelism

for OpenMP Task Parallel Programs

Alex Scherer� and Thomas Gross��� and Willy Zwaenepoel�

� Departement Informatik� ETH Z�urich� CH ���� Z�urich
� School of Computer Science� Carnegie Mellon University� Pittsburgh� PA �����

� Department of Computer Science� Rice University� Houston� TX 		���

Abstract� We present a system that allows task parallel OpenMP pro

grams to execute on a network of workstations �NOW� with a variable
number of nodes
 Such adaptivity� generally called adaptive parallelism�
is important in a multi
user NOW environment� enabling the system to
expand the computation onto idle nodes or withdraw from otherwise
occupied nodes

We focus on task parallel applications in this paper� but the system also
lets data parallel applications run adaptively

When an adaptation is requested� we let all processes complete their
current tasks� then the system executes an extra OpenMP join
fork se

quence not present in the application code
 Here� the system can change
the number of nodes without involving the application� as processes do
not have a compute
relevant private process state

We show that the costs of adaptations is low� and we explain why the
costs are lower for task parallel applications than for data parallel appli

cations


� Introduction

We present a system supporting adaptive parallelism for task parallel OpenMP
programs running in a multi�user network of workstations environment� permit�
ting the e�cient use of a continually changing pool of available machines� As
other users start and stop using machines� resources which otherwise would be
idle are used productively� while these users retain priority�

Adaptive parallelism also allows for other �exible usage models� A certain
percentage of machines may be reserved without having to specify which ma�
chines� or a second parallel application may be started without having to abort
some on�going long�running program� simply by reducing this application�s al�
located resources and letting the new application use them�

We have described how we achieve transparent adaptive parallelism for data
parallel programs in ��	
� therefore we focus more on task parallel applications
in this paper�

We use the OpenMP ���� programmingmodel� an emerging industry standard
for shared memory programming� OpenMP frees the programmer from having
to deal with lower�level issues such as the number of nodes� the data partitioning



or the communication of data between nodes� We recognize that the system can
easily adjust the number of compute threads at the boundaries of each OpenMP
parallel construct without having to involve the application� We call such points
adaptation points�

In task parallel applications� each process solves tasks retrieved from a central
task queue� starting with the next assignment whenever one is done� Typically�
each process works at its own pace� there is no global barrier�type synchroniza�
tion� as opposed to data parallel applications� When an adaptation is requested�
we let each process complete its current task� then the system creates an adap�
tation point by executing an extra OpenMP join�fork sequence not present in
the application code� allowing for a transparent adaptation�

For the application� the only requirement to support adaptivity is for pro�
cesses to indicate whenever they have completed a task� so the system has the
opportunity to transparently insert an adaptation point� For this purpose� one
system call is inserted at task boundaries in the application code� This minor
code change is done automatically by a preprocessor�

We have tested the system using Quicksort and TSP as example applications
running on various NOW environments of PCs with Linux� Even frequent adap�
tations� such as every � seconds� only increase Quicksort�s and TSP�s runtimes
by about ���
�� and 
�	�� respectively�

This paper then presents the following contributions�

�� The design of a transparent adaptive parallel computation system for task
parallel applications using an emerging industry�standard programmingparadigm
�OpenMP�� Only one function call is added to the application speci�cally to
obtain adaptivity� This change is done automatically by a preprocessor�


� Experimental evidence that the system provides good performance on a
moderate�sized NOW� even for frequent rates of adaptation�

�� An analysis of the key adaptation cost components� showing why adapta�
tions in task parallel applications are generally cheaper than in data parallel
applications�

� Background

��� Related Work

Various approaches have been examined to use idle time on networked nodes for
parallel computations�

Much work has been done to support variable resources by using load bal�
ancing� Systems such as DOME ��
� Dataparallel�C ��� ��
� Charm�� ��� �
� and
various versions of PVM ���
 can adjust the load per node on partially available
workstations� but the processor set for the computation is �xed� once started�
as opposed to our system�

Cilk�NOW ��
 and Piranha �	
 support adaptive parallel computation on
NOWs in the sense that the pool of processors used can vary during the compu�
tation� as in our system� However� the Cilk�NOW system is restricted to func�



tional programs� and Piranha requires the adoption of the Linda tuple space as
a parallel programming model and special code to achieve adaptivity�

Another class of systems including Adaptive Multiblock PARTI �AMP� ��

and Distributed Resource Management System �DRMS� ��

 provide data dis�
tribution directives for the recon�guration of the application to varying numbers
of nodes at runtime� Our system distinguishes itself from these approaches by
o�ering fully automatic data management�

All of the above systems require the use of specialized libraries or paradigms�
in contrast to our use of an industry�standard programming model�

��� OpenMP and Task Parallel Applications

OpenMP uses the fork�join model of parallel execution� In the task queue model�
each process � executes tasks from a shared queue� repeatedly fetching a new
task from the queue until it is empty� no global synchronization between the
processes is needed� Therefore� an OpenMP task parallel application typically
only has one OpenMP fork at the beginning and one OpenMP join at the end�

��� OpenMP on a NOW

We used the TreadMarks DSM system �

 as a base for our implementation�
TreadMarks is a user�level software DSM system that runs on commonly avail�
able Unix systems and on Windows NT� and it supports an OpenMP fork�join
style of parallelism with the Tmk fork and Tmk join primitives for the mas�
ter process� and the Tmk wait primitive for the slave processes� We use the
SUIF compiler toolkit ��
 to automatically translate OpenMP programs into
TreadMarks code ���
� Each OpenMP parallel construct is replaced by a call to
Tmk fork followed by a call to Tmk join�

An important advantage of using the shared memory paradigm is the auto�
matic data distribution� including the redistribution after an adaptation� reliev�
ing the programmer from this task�

��� Transparent Support of Adaptivity

In our model� slave processes perform all work either inside tasks or� as in data
parallel applications� within other OpenMP parallel sections containing no tasks�

To allow for a transparent adaptation whenever an adapt event occurs while
the application is busy with a task queue� we let each process �nish its cur�
rent task� then we let the system execute an extra OpenMP join�fork sequence�
Having all slave processes� work for the current OpenMP parallel section being
contained in the tasks ensures that slave processes do not have any compute�
relevant private process state when the adaptation is performed� We introduce

� In our case� �process� and the OpenMP documentation�s term �thread� are syn

onyms
 In our implementation of OpenMP� these threads execute as Unix processes
on various nodes� where a node is a machine




Original code Automatically modi�ed code

expr�� expr��

while �expr�� f while �expr� �� �Tmk leave��� f
statement statement

expr�� expr��

g g

do f do f
statement statement

g while�expression�� g while�expression �� �Tmk leave����

for �expr�� expr�� expr�� for �expr�� expr� �� �Tmk leave��� expr��

Table �� Loop condition code modi�cations needed for adaptations
 These transfor

mations are done automatically by a preprocessor


a new TreadMarks primitive Tmk leave which the application calls to indicate
completion of a task� This call returns true if a process is to leave� false other�
wise� The preprocessor inserts this call at task boundaries� More precisely� the
preprocessor modi�es the termination�condition of top�level loops of the func�
tions called by OpenMP forks according to the rules in Table �� If a forked
function does not have any other �compute�relevant� top�level statements be�
sides a loop which retrieves and adds tasks� as in the applications investigated�
then the preprocessor can perform the correct code modi�cations automatically
�Figure ���

Adaptations are completely transparent to the application� as the only appli�
cation code modi�cation is the insertion of Tmk leave� There� leaving processes
may terminate while continuing processes experience a slight delay while the
system performs the adaptation� and joining processes begin execution of the
forked function�

In our current model� task queues are maintained by the application� as the
OpenMP standard does not explicitly support task queues� However� KAI have
proposed their WorkQueue model ���
 as an addition to the OpenMP standard�
o�ering two new pragmas� taskq and task� for task queues and tasks� respec�
tively� Following the acceptance of the proposal� we may modify our system
accordingly� eliminating the need for the Tmk leave primitive� as the system will
recognize task boundaries through use of the task pragma�

The WorkQueue model allows nested task queues� In our model� we per�
mit adaptations only in top�level task queues� other task queues are completed
non�adaptively� avoiding the complexity of dealing with compute�relevant slave
process states� such as letting another process complete some half��nished task
of a leaving process�

� Functionality

Processes may be added to or withdrawn from the computation� actions called
join events and leave events� or collectively adapt events� The system performs



Code executed void �Worker�func�struct Tmk�sched�arg 	�my�arguments�

by all threads� 


���

do 


if �PopWork��task� �� 
�� 


break�

�

QuickSort�task�left� task�right��

� while ���� �	 original code 	�

�	 modified line below replaces above line 	�

� while ��Tmk�leave����

�

Code executed ���

by master� Tmk�sched�fork��Worker�func� �Tmk�arguments��

���

Fig� �� Example structure of a task queue application �Quicksort� showing modi�cation
for adaptations according to rules in Table �


requested adaptations at the next adaptation point� If several processes wish to
leave and�or are ready to join when an adaptation point is reached� then these
adapt events are all performed simultaneously� Such a scenario is actually much
cheaper than performing the events sequentially� as the total cost per adaptation
does not vary in proportion to the total number of leaves and�or joins performed
at once� New processes require about ��	�� seconds from the join request until
they are ready to join� but during this time all other processes proceed with
their computations�

The only limitation in the current implementation is that the master process
cannot be terminated�

� Implementation

We have modi�ed the TreadMarks version ����� system to support adaptivity�
The current version of the system supports adaptive parallelism for both data
parallel and task parallel applications� but we focus primarily on task parallel
applications in the following description�

Join and leave requests may be sent to the system from any external source
via a TCP�IP connection�

��� Join Events

For a join event� the master spawns a new process pnew on the designated ma�
chine and all processes set up network connections to pnew while still continuing
with their work� i�e� any slow low�level process initializations do not a�ect the
on�going computation� Once pnew is ready to begin work� the master starts an



adaptation phase� It noti�es the other processes of the adapt event� whereupon all
processes continue until they reach the next adaptation point� either Tmk leave

or a regular OpenMP join present in the application code�
Here� all processes perform an OpenMP join and fork� with slaves receiving

adaptation information such as new process identi�ers� This extra join�fork is
initiated by the system and is therefore not in the application source code� Also�
the master does not send a pointer with a compute function to the old slaves�
only the new process pnew receives a pointer to the current compute�function�
Now� all old processes perform a garbage collection� This mechanism causes di�s
to be fetched and applied� then each node discards internal memory consistency
information �such as twins� di�s� write notices� intervals lists �

�� A garbage
collection typically costs only a few milliseconds� Thereafter� all shared memory
pages are either up�to�date or discarded� In the latter case� an access will cause
the page to be fetched from another process with an up�to�date copy�

The system now performs three barrier synchronizations� The �rst barrier�s
departure message to the new process includes all non�default page�state infor�
mation for all pages� This barrier guarantees that garbage collection is completed
before page state information is used subsequently�

Next� a second barrier is performed� then all necessary reassignments are
performed� including the redistribution of lock managers and lock tokens� and
all memory consistency information is cleared� This second barrier ensures that
any duplicate departure messages of the �rst barrier are not sent after some
process has already begun with any reassignments�

Thereafter a third barrier is performed� ensuring that no process can proceed
with its computation before all processes have performed reassignments and
cleared their old consistency information� This barrier concludes the adaptation
phase� and processes resume or begin work�

��� Leave Events

The handling of leave events is similar to the handling of join events� When a
leave request arrives� the master begins the adaptation phase by notifying all
processes� Once all processes have reached an adaptation point� an OpenMP
join and fork is executed� followed by a garbage collection�

The system then performs three barrier synchronizations as previously� but
with some additions� All pages that are exclusively valid on a leaving process
must be transfered to a continuing process� For this� all old slaves include page�
state information in the arrival�message for the �rst barrier� then the master
allocates an approximately equal number of such pages among the continuing
processes and includes this information in the barrier departure messages� This
barrier guarantees that garbage collection is completed before page state infor�
mation is used and before any pages are moved o� leaving processes� Processes
now in parallel fetch these pages as allocated by the master and assume owner�
ship�

After a second barrier� reassignments are again done and consistency infor�
mation is cleared� This second barrier ensures that any page transfers o� leaving



processes are completed� so leaving processes can now terminate� and the third
barrier is performed without participation of leaving processes�

��� Multiple Adapt Events

Join and leave requests may arrive anytime� Leave requests are always given
priority over join requests� as a compute process may need to be cleared o�
some machine rapidly� Requests are therefore handled according to the policy of
including any adapt event that can be included in the current adaptation without
delaying any pending leave� other requests are postponed until completion of the
adaptation�

The system starts an adaptation phase immediately upon receipt of a leave
request� unless the system is already in an adaptation phase or a sequential phase�
This policy causes about�to�join processes which� at the adaptation point� are
still busy setting up network connections� to be aborted and restarted after the
adaptation�

Any deferred or aborted adapt events are performed upon completion of the
adaptation phase� with leave requests being handled �rst�

��� Special Cases

Consider the scenario where some processes arrive at an OpenMP join J� belong�
ing to the application while� due to an adapt request� other processes �rst arrive
at the adaptation point and are executing another OpenMP join J
 constitut�
ing the adaptation point� before having reached J�� Space limitation does not
permit a detailed discussion here� but the system handles such cases correctly�

Consider further an adaptation request arriving while the system is in a
sequential phase� i�e� in�between an OpenMP join and fork� In this case� the
adaptation is performed immediately when the sequential phase is over� Any
such delay is not so tragic� as a process wishing to withdraw is idle during this
phase and is not using compute resources�

� Overview of Performance

��� Experimental Environment

Our testbed consists of � ���MHz Pentium II machines with 
	�MB of memory�
and we run Linux 
�
��� For the communication� we use UDP sockets� and the
machines are connected via two separate switched� full�duplex Ethernet networks
with bandwidths of ���Mbps and �Gbps� respectively� The �Gbps network only
o�ers extra bandwidth compared to the ���Mbps network� as the latency is very
similar in both networks� We exploit this by increasing the page size from �K to
��K when using the �Gbps network�



Shared memory Avg� Avg� time �sec�� Number�amount of transfers
Size Network � Pages Page size � Tasks Total Per task Pages MB Messages Diffs

Traveling �� cities ���Mbps ��� 	k 
�� ��
� ���� ���� 
���� 
��
� 
��
Salesman �Gbps 
� �
k 
�� ���	 ���� 	�
� 
���� ����� 
�	
Quicksort ���������� ���Mbps ���� 	k 
�� ����
 ���	 ���
� �
	��� �
�	�� ���

integers �Gbps 
	�� �
k 
�� 
�	
 ���� ���
 �	
��
 	���
 ����
Table �� Application characteristics and network traffic for ��thread runs on the non�adaptive or on the adaptive
system without any adapt events�

��� Applications

We use the two task queue applications from the standard TreadMarks distri�
bution� Quicksort and TSP �Table 
��

Quicksort sorts an array of integers by adding and retrieving tasks of not�
yet�sorted subarrays to and from a central task queue� respectively� Each array
is repeatedly split into two subarrays around a selected pivot�value� The shorter
one is put on the task queue and the thread recurses on the longer one� until its
length falls below a threshold� then it is sorted locally�

TSP uses a branch�and�bound algorithm to solve the traveling salesman prob�
lem� Tasks representing partial tours are repeatedly added to and retrieved from
a central task queue� Subtours of a given maximum length are solved recursively
locally� while longer ones are split into subproblems and added to the task queue�

��� No Overhead for Providing Adaptivity

The provision of adaptivity costs virtually nothing compared to the standard
non�adaptive TreadMarks system � � as no extra messages are sent in the absence
of adapt events�

��� Measurement Methodologies

For multiple adaptations during the course of execution� we �rst calculate the av�
erage number of processes used during the whole run �e�g� ��		� by measuring the
times in�between each adaptation� then we adjust the runtime to represent a de�
sired average �e�g� ��	�� using a speedup�curve obtained from non�adaptive runs�
The adaptation overhead is the di�erence in runtime compared to a �theoretical�
non�adaptive run of the same average� as calculated in the speedup�curve�

To quantify in detail a single adaptation from p to q processes� we collect
statistics beginning only at a point immediately preceding the adaptation and
compare the results with a non�adaptive run of q processes� We ensure that the
number of tasks completed �i�e� the average amount of work done� during statis�
tics measurements is equal in both cases� For the adaptive run� the measured data
layout is initially pre�adaptation� but all measured work is done post�adaptation�
The di�erence between the adaptive and non�adaptive run re�ects the cost of
the adaptation�

Obviously� the two tested applications have a non�deterministic execution�
as any task may be executed by any process� and the length and number of

� Our measurements do not show any di�erence




Fig� �� Execution times for di�erent intervals between adapt events� for TSP �above�
and Quicksort �below�


individual tasks varies both within one test run and between di�erent test runs�
especially for Quicksort� which uses a random input� However� the variations are
small enough for our methodologies to show clear trends� especially in combina�
tion with the averaging of results obtained from several test runs�

��� Cost of Joins and Leaves

To provide an idea of the overhead of adaptations� we periodically caused an
adapt event to occur� Figure 
 shows how the total runtime varies as a function
of the interval between successive adapt events� Starting with � or � processes�
we let the system alternately perform a leave or a join event at the end of each
interval� resulting in about ��	 or ��	 processes� on average� For the leaves� we
let each of the slave processes leave in turn�

Variations in execution time due to the non�deterministic nature of the appli�
cations are apparent in Figure 
� as the points in the graphs represent individual
test runs� Nevertheless� the trend of an increase in runtime in proportion with
an increase in adaptation frequency� as expected� is evident� Every adaptation
adds a similar delay to the total runtime�

In TSP� even frequent adaptations of one every second hardly increase the
total runtime� In Quicksort� one adaptation every 	 seconds may increase the



Avg
 � Pre
adapt

 Adapt

procs
 Network delay cost cost Total

TSP �
� ���Mbps �
�� �
�� �
�
or 	
� or �Gbps

Quicksort 	
� ���Mbps �
�� �
� �
��
�
� �
�� � �
��

Quicksort 	
� �Gbps �
�� �
� �
��
�
� �
�� �
� �
��

Table �� Typical average costs �in seconds� per adaptation �For TSP� the exact dif

ferences between the various setups are di�cult to quantify precisely� as the absolute
costs are small in all cases�


runtime by perhaps ���� The graphs also show how adaptations in the ��	
process runs are cheaper than in the ��	 process runs� for equal adaptation
frequencies� as explained in the next section� and how the faster network o�ers
signi�cantly better performance� both in total runtime and in adaptation costs�

Table � provides detailed results for individual adaptations� obtained using
the measurement methodology for single adaptations described in the previous
section� Table � is a summary of Table ��

We show the number of extra adaptation�induced page fetches occurring
during the course of computation after an adaptation �Pappl or Pages Appl� in
the table�� as the application experiences extra access misses� and the number of
pages explicitly moved o� any leaving process by the system �Psystem or Pages
System� i�e� all pages of which only the leaving processes have valid copies�� The
table further shows the cost in seconds for these page transfers � �

As both applications execute non�deterministically� such that variations in
runtime of ��	 seconds for identical test runs of Quicksort are not uncommon�
we show a lower and upper bound for each adaptation� giving a range of values�
The numbers were computed by comparing the best� and worst�case adaptive
results with the average of the corresponding non�adaptive results� For each
adaptation� in di�erent runs� we adapted at several di�erent times during each
application�s execution� and we repeated each individual test case several times�
Negative values show that an adaptation can even lead to less data transfers and
an earlier completion of the computation than a comparable non�adaptive run�

The total cost of an adaptation is the sum of the cost of the Pappl and� if
applicable� the Psystem transfers� plus a pre�adaptation delay incurred by waiting
at an adaptation point for all processes to arrive� Psystem page transfers obviously
only occur if at least one process is leaving� The pre�adaptation delay is the
overall compute time lost before the adaptation begins� i�e� the average of all
processes� idle times� occurring after completion of a task� while a process is
waiting at the OpenMP join which initiates the adaptation�

� The Time Pages Appl� values actually include other adaptation
related costs such
as garbage collection and management of data structures
 We do not present these
separately� as their share of the total costs is minimal� on the order of ��




The pre�adaptation delay cost obviously varies with the length of the tasks�
For the applications tested� it is typically in the range of ����� seconds� and in
a few percent of the cases� it is around ��
 seconds� Only Quicksort rarely has
signi�cantly longer delays� In about �� of the cases� the cost is on the order of
��	 seconds�

The results shown in Figure 
� which contain all costs� con�rm that the pre�
adaptation costs are small� Given the total runtime increase and the frequency of
adaptations in the graphs� one can easily estimate an average cost per adaptation
Cavg and verify that these costs are hardly higher than the costs for the Pappl
plus the Psystem transfers reported in Table �� At the same time� these Cavg

results also validate the measurement methodology for single adaptations used
for Table ��

We observe that the costs for TSP are very small in all cases� so the absolute
values are not very meaningful� especially given the large range of measured val�
ues compared to the absolute upper and lower bounds� Table 
 shows that TSP
uses little shared memory� causing little data redistribution at an adaptation�
The conclusion therefore is that in the absence of large data redistributions�
adaptations are very cheap� i�e� there are no signi�cant other costs�

For Quicksort� we observe both positive and negative values� On average�
adaptations for this application also cost only a fraction of a second� We analyse
the results in more detail in the next section�

Table � further shows that the percentage of shared memory pages moved
extra due to an adaptation is very small in nearly all cases for Quicksort �a
few ��� so the absolute costs remain small compared to our previous results of
data parallel applications� where redistribution of ������� of all shared memory
pages is common ��	
�

To sum up� Table � shows that the costs of an adaptation are typically less
than ��� seconds for TSP and less than ��	 seconds for Quicksort even in the
slower of the two environments tested� when using around � processes�

� Analysis of Performance

The key cost component of an adaptation is the additional network tra�c for
the data redistribution caused by this event� We therefore analyse the extra page
transfers attributable to the adaptation� as compared to the non�adaptive case�

Furthermore� we point out the main di�erences between independent and
regular applications� We call applications where the data layout is independent
of process identi�ers independent applications� as opposed to regular applications
which have a block or block�cyclic data distribution� In regular applications� a
process� data partition is determined by the process identi�er and the current
number of processes� and the process performs most work using the data in
its partition� Adaptations generate a large shift in each process� assigned data
partition� and in general all pages that were not in the pre�adaptation data
partition have to be fetched extra after the adaptation�



Traveling Salesman Quicksort
Time Time Time Time
Pages Pages Pages Pages Pages Pages Pages Pages

Adaptation Appl� Appl� System System Appl� Appl� System System
���Mbps Ethernet environment with page size of �K

� � � ���� ���� ��� ��� ���� ���� � �	 ���
 ���� ��
� 
�� ���� ��
� ��� ����
� � � ���	 ���� �� �
� ���� ���� � �� ���	� ����	 ���� 	�
 ���� ���� 
�	 ���	
� � 
 ���� ���	 ��	 ��� ���� ���� � 
 ���	� ����
 ��		� �
�� ���� ���� ��
� �
�

� � � ����� ���	 �
� �� � � ���� ��	� ���	 ���� � �

 � � ����� ���	 ��� 	� � � ���� ���� ��� �	�� � �
� � � ���� ���� �	 	� ���� ���� � � ���	� ���� ����� ��� ���
 ��
� ���� ����
� � � ����� ���� � �� � � ���� ���� ���� ���� � �

�Gbps Ethernet environment with page size of �
K
� � � ���� ���� �	� ��� ���� ���� � � ����� ���� ��
� �� ���� ���� ��� �	�
� � � ���� ���	 � ��� ���� ���� � �� ����� ���� ���� 	� ���� ���� �	� ���
� � 
 ����� ���� �
	 �� ���� ���� � � ����� ����� ��
� �	
 ���� ���� ��� ���
� � � ���� ���
 �� �� � � ���� ���	 ��� 	�� � �

 � � ����� ���
 ��� �� � � ���� ��	� ��� ��� � �
� � � ����� ���� ��� �� ���� ���� � � ����
 ���� �	�� 
�� ���� ���� 
�
 ���
� � � ����� ���� ��� �� � � ���
� ���� ���
 �
	 � �

Table �� Typical costs for various adaptations �excluding pre�adaptation delay
 in two test envi�
ronments� in seconds and number of �k or �
k pages� For each case� we show the lower and upper
bound of values measured in a series of representative tests� We performed one or two leaves from �
processes �� � �� � � 

� one or two joins to � processes �� � �� 
 � �
� one simultaneous leave
and join with � processes �� � �
� and one leave from or one join to � processes �� � �� � � �
�

In contrast� in independent applications such as Quicksort and TSP tasks are
not bound to processes� any task may be solved by any process� so the probability
that a �rst�time page access of a task is for a locally�valid page depends on issues
such as the number of di�erent tasks using the same page and whether pages
are mostly read �as in TSP� or also written to �as in Quicksort�� As there are
no assigned data partitions� an adaptation does not cause data repartitioning�

Adaptations in general are much cheaper when more processes are involved�
Not only does a join or a leave of �� � or �� � processes cause less data transfer
than a join or a leave of �� � or �� � processes� but more signi�cantly� with a
larger number of processes� the number of page transfers per process and equally
per network link is much lower� so far more page transfers occur in parallel�
Table � shows that the range of values for Pappl transfer costs are higher for less
processes involved�

We examine more speci�c e�ects of joins and leaves in regular and indepen�
dent applications in the following two subsections�

��� Join Events

Adding new compute processes may cause the following data movements� ���
the faulting�in of pages by the joining processes� as all their pages are invalid
initially� and �
� the data redistribution among the �old� processes� when the
total number of processes changes� i�e� when the number of joining and leaving
processes is not equal�

In regular applications� in most cases all shared memory pages are accessed
repeatedly many times� Joining processes therefore generally have to page in the
complete partition assigned to them� typically ��n of all pages for n processes�



which is more than the number of extra pages fetched by any other process due
to the data redistribution� The transfers are less only if not all of the partition�s
data is accessed anymore during the rest of the computation� As each process
typically performs the same amount of work within one OpenMP parallel section�
the bottleneck is the process fetching the largest number of pages� i�e� the paging�
in of the joining processes� data partitions constitutes the bottleneck�

Independent applications however do not assign data partitions� In TSP�
where many tasks reside in the same shared memory page and most accesses are
read�only� processes often have a valid copy of most of the pages used overall�
Any joining process therefore needs to page�in all these pages extra� so with
several processes joining� the total extra data transfer may exceed ���� of the
shared memory pages in use� In Quicksort� with many write�accesses to pages�
most valid pages are in the exclusive state� only a few in the shared state� and
each of n processes typically has about ��n of all used pages valid� As each page
is accessed only a few times� as joins occur closer to the end� a new process pages
in much less than ��n of all pages in use� as most pages are not needed anymore�
Furthermore� due to the absence of data redistribution� independent applications
experience less tra�c among the �old� processes when adapting� compared to
no adaptation� With a join of m� n processes �m � n�� on average more pages
are valid per process for m than for n processes� As expected� Table � shows
that the number of Pappl transfers as a percentage of all shared memory pages
�cf� Table 
� is much smaller than for regular applications� where percentages of
������ are common ��	
�

Another more signi�cant di�erence between independent and regular appli�
cations is the fact that processes compute tasks at their own pace in independent
applications� therefore a larger number of page fetches by one process� such as
a join� does not cause all other processes to wait� so only the fetching and the
sending process lose compute time� as opposed to regular applications� where all
processes lose compute time� waiting at the next OpenMP join�

In conclusion� due to the above reasons join events are signi�cantly cheaper
in independent applications than in regular applications�

��� Leave Events

A leave of processes may cause the following data movements� ��� All pages
Psystem exclusively valid on the leaving processes are moved to continuing pro�
cesses� and �
� the data repartitioning among the continuing processes generates
page fetches Pappl� This may include some of the Psystem pages� as the system
allocates these without knowledge of any data partitioning�

The share of Psystem transfers is comparable for regular and independent
applications� In both cases� in applications with little read�only sharing� given
n processes before the adaptation� a leaving process often has about ��n of the
pages in use in an exclusively�valid state� so these pages are evenly distributed
among the continuing or joining processes� Table � shows that the share of
Psystem pages is in the expected percentage range �cf� Table 
�� and the numbers



for two leaves from �� � processes are about double the numbers for one leave
from �� � and �� � processes�

Thereafter� regular applications experience data repartitioning� as in the case
of joins� The number of Pappl transfers are less than for joins� because generally
no process has to page in its complete data partition as a join does� but the data
repartitioning still a�ects around ���	�� of all shared memory pages ��	
�

In independent applications however� after having received the Psystem pages�
the continuing processes each have about the same share of valid pages as in the
corresponding non�adaptive case� where the Psystem pages are valid on some
process already� Therefore� Pappl is around zero� as there is also no data repar�
titioning� Table � shows that the Pappl values often vary within ranges of both
positive and negative values�

When sending Psystem pages� the system batches several pages into one mes�
sage� whereas Pappl page transfers only contain one page per message� However�
all Psystem pages have to be fetched from the one �or few� leaving process�es��
so these transfers occur less in parallel than the Pappl transfers� In addition�
no process is performing any work while any Psystem transfers are in progress�
In contrast� in independent applications� any Pappl transfers occur while other
processes continue working �while in regular applications they may be idle��

In conclusion� while the cost of leaves is dominated by the Pappl transfer
costs in regular applications and this component is around zero for independent
applications� while the Psystem transfer costs are similar in both cases� leave
events are generally signi�cantly cheaper in independent applications than in
regular applications�

� Discussion and Conclusions

We have developed a system providing transparent adaptive parallel execution
of OpenMP applications on NOWs� Our system combines the convenience of
an industry standard programming model� OpenMP� with a �exible and user�
friendly usage� Users can easily grant or revoke use of a machine at any time using
a graphical user interface� or the system can even be controlled automatically�
but we do not analyse user behavior in this paper�

Obviously� the performance of a software DSM system cannot match the per�
formance of a dedicated hardware shared memory system� Rather� our system
should be assessed as enabling otherwise idle machines to be used productively
� especially for longer�running computations � thanks to the �exibility which
adaptivity o�ers� something previously impossible due to con�icting resource re�
quirements in a multi�user environment� In many cases� our system eliminates
the need for a reservation of machines for parallel processing� When using exist�
ing NOWs� no hardware costs arise� and running existing OpenMP applications
means no software development costs are incurred either�

We have demonstrated that the cost of adaptation is modest and that it is
signi�cantly lower for independent applications� where the data distribution is
independent of the process identi�ers� than for regular applications�



References

�
 S
 P
 Amarasinghe� J
 M
 Anderson� M
 S
 Lam� and C
 W
 Tseng
 An overview
of the suif compiler for scalable parallel machines
 In Proceedings of the �th SIAM
Conference on Parallel Processing for Scienti�c Computing� pages ������	� San
Francisco� February ����


�
 C
 Amza� A
L
 Cox� S
 Dwarkadas� P
 Keleher� H
 Lu� R
 Rajamony� W
 Yu� and
W
 Zwaenepoel
 Treadmarks� Shared memory computing on networks of worksta

tions
 IEEE Computer� ������������ February ����


�
 J
 Arabe� A
 Beguelin� B
 Lowekamp� E
 Seligman� M
 Starkey� and P
 
 Stephan

Dome� Parallel programming in a heterogeneous multi
user environment
 Tech

nical Report CMU
CS
��
��	� Computer Science Department� Carnegie Mellon
University� April ����


�
 R
D
 Blumofe and P
A
 Lisiecki
 Adaptive and reliable parallel computing on
network of workstations
 In Proceedings of the USENIX ���� Annual Technical
Symposium� pages ������	� January ���	


�
 N
 Carriero� E
 Freeman� D
 Gelernter� and D
 Kaminsky
 Adaptive parallelism
and piranha
 IEEE Computer� ������������ January ����


�
 G
 Edjlali� G
 Agrawal� A
 Sussman� J
 Humphries� and J
 Saltz
 Compiler and
runtime support for programming in adaptive parallel environments
 Scienti�c
Programming� �����������	� January ���	


	
 P
 J
 Hatcher and M
 J
 Quinn
 Data�parallel Programming on MIMD Computers

The MIT Press� Cambridge MA� ����


�
 L
 V
 Kal�e� B
 Ramkumar� A
 B
 Sinha� and A
 Gursoy
 The CHARM Parallel
Programming Language and System� Part I 
 Description of Language Features

IEEE Transactions on Parallel and Distributed Systems� ����


�
 L
 V
 Kal�e� B
 Ramkumar� A
 B
 Sinha� and V
 A
 Saletore
 The CHARM Par

allel Programming Language and System� Part II 
 The Runtime System
 IEEE
Transactions on Parallel and Distributed Systems� ����


��
 R
 Konuru� S
 Otto� and J
 Walpole
 A migratable user
level process package for
pvm
 Journal of Parallel and Distributed Computing� ������������� Jan ���	


��
 H
 Lu� Y
 C
 Hu� and W
 Zwaenepoel
 OpenMP on networks of workstations
 In
Proc� Supercomputing ���� Orlando� FL� November ����
 ACM�IEEE


��
 J
 E
 Moreira� V
 K
 Naik� and R
 B
 Konuru
 A system for dynamic resource allo

cation and data distribution
 Technical Report RC ����	� IBM Research Division�
October ����


��
 N
 Nedeljkovic and M
J
 Quinn
 Data
parallel programming on a network of het

erogeneous workstations
 Concurrency� Practice 	 Experience� �������	����� June
����


��
 OpenMP Group
 http��www
openmp
org� ���	

��
 A
 Scherer� H
 Lu� T
 Gross� and W
 Zwaenepoel
 Transparent Adaptive Parallelism

on NOWs using OpenMP
 In Proceedings of the Seventh ACM SIGPLAN Sympo�
sium on Principles and Practice of Parallel Programming 
PPOPP�� Atlanta� May
����
 ACM


��
 S
 Shah� G
 Haab� P
 Petersen� and J
 Throop
 Flexible Control Structures for
Parallelism in OpenMP
 In First European Workshop on OpenMP 
EWOMP �����
Lund� Sweden� September�October ����
 Kuck � Associates� Incorporated



