Efficient Algorithm for Deter mining the Optimal
Execution Strategy for Path Queriesin OODBS

Weimin Chen, Karl Aberer

GMD-IPSI, Dalivostr. 15, 64293 Darmstadt, Germany
E-mail: { chen, aberer} @darmstadt.gmd.de

Abstract. To select an optimal query evaluation strategy for apath query in an object-oriented da-
tabase system one has to exploit the available index structures on the path. In a database with a
large database schema many alternative strategies have to be considered for the evaluation of a
path query by choosing from alarge set of available indices, which can make the selection of the
optimal strategy expensive. We give an algorithm that finds the optimal strategy for evaluating a
path query with time complexity independent of the set of indices available in the database. The
algorithm considersall possibleforward and backward traversal strategiesand hastime compl exity
O(n?) in the path length n. Incorporating this algorithm into the query optimization for object-ofi-
ented database management systems can improve the response time of the system, by optimizing
an equally important and frequent type of queries with high efficiency.

Key Words. Object-oriented databases, Index selection, Query optimization, Paths

1 Introduction

Object-oriented database systems have a strong relationship to programming lan-
guages by means of their data model. Therefore operational aspects play an important
role in the access to object-oriented databases. An important kind of operational ac-
cess is the evaluation of attributes containing object references, i.e. the navigation be-
tween objects. The concept of navigation along paths is central for object-oriented
database system. With large databases it frequently occurs that large sets of objects
are treated in a similar way, in particular the same kind of navigation is performed
repeatedly for many objects. When performing such navigations by straightforwardly
repeating a single navigation for each object, one restricts the evaluation of such re-
guests to the database basically to a single strategy, for example forward traversal. It
was long recognized in relational systems, that processing requests against large sets
of objects offers avast potential for optimizing these requests.

Path queries, i.e. evaluation of paths starting from a set of objects and evaluating a
predicate against the value of the path, are an important class of declarative queries.
They unify the navigational aspect characteristic for object-oriented database systems
and the declarative aspect of uniform access to large object sets. Path queries are one
distinctive feature for the usage of object-oriented database systems, that can not be
found in relational database systems. Determining the optimal query evaluation strat-
egy for adeclarative path query is thus an important problem in the area of object-ori-
ented database systems.

To speed up the evaluation of path queries different indexing mechanisms [4] are
proposed in the literature. So an important aspect of the optimization of path queries
is the selection of indices on the path. A large database schema may include several
hundred classes and attributes, so that the set of index structures defined for the corre-
sponding database can be very large. Different authors [13, 15, 16] discuss how to
configure profitable index structures for a given large database schema. With this
background, determining the optimal query execution strategy itself can become very
expensive for two reasons. Many alternative indices may be available to evaluate the
same path and the applicable indices have to be chosen from the whole set of indices,
which may be very large. Thus, the efficient determination of the optimal strategy to
evaluate path queries is another important problem in query optimization. Thisisim-
portant for interpreted query languages and also for query optimization in runtime, as
response time is critical. The problem of efficiently selecting a strategy to evaluate
paths using indices in an optimal way is still rarely studied.

Bertino et al. [14] touches this problem, where severa properties to identify a bet-
ter query execution strategy for paths are discussed. However, an algorithm to gener-
ate the optimal execution strategy is still unknown. General purpose approaches, like
rule-based query optimization [17], cannot exploit the specia structure of the prob-
lem, and lead to less efficient search. For example, Kemper and Moerkotte [18] inves-
tigate different kinds of rules, that are used to match generalized index structures, so-
called access support relations, with path queries. It is not analyzed there, whether the
rule system together with their rule interpreter leads to an optimal plan or what is the
complexity of the optimization process.

The result of this paper is an efficient algorithm for determining the optimal evalu-
ation strategy for a path query. In particular we exploit the fact that for path query
optimization one can optimize each subpath separately, thus avoiding a combinatorial
explosion in the search space. We consider forward and backward traversal as well as
index evaluation as possible strategies. As the main result we show that we can select
the optimal strategy with time complexity independent of the set of available index
structures in the database by using a variant of the Aho-Corasick multiple-keyword
pattern-matching algorithm [12]. The resulting algorithm has time complexity O(n?),
where n is the length of the query path. For the purpose of comparison we present
severa aternative algorithms and then compare their time-efficiencies. The results
we present can be complemented with other optimization techniques, like those
known from relational query optimization, or techniques, that consider other impor-
tant aspects of the object-oriented data model, like the semantic optimization of meth-
odsin queries[10].

The remainder of this paper is organized as follows: Sections 9 reviews several
basic concepts with respect to paths and query processing. Section 10 summarizes the
main principles of the indexing techniques considered in this paper. Sections 11, 12,
and 13 discuss severa algorithms for determining the optimal query execution strate-
gy. Finaly, we conclude in Section 14.

2 Basic Concepts

A query path is specified by P = C1.A1.Ay.A, where A are attributes of aclass G,
and the value of A isan object of class G+1 (1 < i <n). Weassumethat A isglobally
identified.1 With this assumption, a query path P can be simply represented by A;.A,.
... .An. For aglobally identified attribute A, let class(A) denote the class in which A is
defined. Thus, in path P the type of A is class(A+1), for i < n. In the following, a
subpath Aj.A+1. ... A (1 =i <] < n) of Pisdenoted by P(i, j).

Inthe following let apath P = A1.Ao.A,. A complete path instantiation of P isa
sequence 01.0p.0n+1 Such that o1 is an instance of class(A1) and g+ the value
(contained in the value) of attribute A of object g, 1 < i < n. A partial instantiation
of P is a complete path instantiation of a subpath P(i, n), 1 <i < n. Furthermore, a
partia instantiation G.0 +1.0n+1 Of P is called non-redundant if there does not exist
an object o such that 0.G.0 +1.0n+1 forms another partial instantiation of P.

The value of path P for object o is the value 0,+1 of a complete path instantiation
0.02.0n+1 Of P. A path query (P, V) is specified by a path P and a set of values V.
Sometimes the set V is specified by a predicate. The result of a query (P, V) is the set
of all objects of class(A1) for which the value of P iscontained in V.

A query (P, V) can be split into the following subgueries processed in the right-to-
left order:

(P(ig,i1—1), V1), (P(iq, i?—_l), Vo), vy (P(ij,ij+1—1), Vi+), ..,

(P(ik, Tk+1— 1), Vk+1))
wherel=ip<i;<..<ik+1=n+1 V1=V, andV (1 = | = k) isthe set of objects of
cIass(Aij) which is the result of the subquery (P(ij, ij+1 — 1), Vj+1). Clearly, Vj is also
the result of the query (P(jj, n), V). For each above subquery (P(jj, ij+1— 1), Vj+1), 0 <
j = k, threekinds of query execution strategies are considered in this paper:

e Forward traversal: Evaluate for al objects of cIass(Aij) the value of the path

P(ij, ij+1 — 1) and check whether it is contained in Vj+1 (note, that Vj+1 is already
known, as subqueries (5) are processed in right-to-left order). The cost of eva
luating the path P(jj, ij+1 — 1), by forward traversal can be computed in constant
time. The corresponding cost function depends on some parameters, e.g. the
cardinality of class Class(Aij) associated with attribute A and the value ij+1 —ij.

e Backward traversal: Some OODBSs can support inverse references; with these
it is possible to traverse the path from right to left starting from all objects in
Vj+1 for the query (P(jj, ij+1 — 1), Vj+1). The cost of backward traversal for a
path P(i, j), 1 = i =] < n, depends on anumber k X k+1 X ... Xk, wherek is
the average number of instances of class(4;) assuming the same values for at-
tribute A . In the algorithms presented in this paper, the cost of backward tra-
versal for path P(i, j) is dways calculated after the cost for path P(i + 1, j) is
evaluated. Thus, by means of an incremental agorithm, the cost of backward

2. Thiscanbeeasily achieved by re-identifying the attribute A as C::Awhere Aisthe attribute
of classC.

traversal for path P(i, j) can be calculated in constant time, based on the already
calculated cost for path P(i + 1, j).

e Indexed access: For each value in Vj+1, an index (if any exists) matching the
path P(ij, ij+1 — 1) is evaluated, by which the result is returned. Once a particular
index isidentified to match a path P(i, j) the index access cost can be evaluated
in constant time.

The cost of evaluating a subquery (P(jj, ij+1 — 1), Vj+1) relies on what query strategy is
chosen as well as on the cardinalities of the sets Vj and Vj+1, but it is independent of
the strategies chosen for the previous subqueries split from (P(ij+1, n), V). Thisis the
so-called separability property [13]. It is important because the optimal query execu-
tion strategy can be chosen for each subpath independently from the query execution
strategies chosen for the other subpaths. Without that, the optimal query strategy
would have to be determined in exponential timein general.

3 Index Organizations

In this paper, two kinds of indices, path index and nested index [14], as well as any
collection of path indexes and nested indexes for subpaths of a path, a so-called multi-
index, is considered. In the following we use the definitions from [13].

Given a path P = A.Ap. ... Ay, apath index on P is a set of pairs (0h, §.G+1. ..
.On), | = 1, where §.gj+1.0, is either a complete instantiation or a non-redundant
partia instantiation of P. A nested index on P is a set of pairs (0,, 01) where there
exists acomplete instantiation of P equal to 01.0.0,. For both kinds of indices, the
first elements of the above pairs are the index keys. Thus, given a path P a nested
index defined on P supports efficient execution of the query on P, while a path index
defined on P supports efficient execution of each query (P(i, n), V), 1 < i < n. That
is, asingle path index can support queries on n different paths.

Logically, we treat a path index defined on P = A1.A;.A, as n different indices
each of which directly supports a query on the corresponding subpath P(i, n), 1 < i <
n. Thus, we can make a correspondence between alogical index (i.e. anested index or
alogical path index) and a path on which the index can directly support the execution
of queries. In the rest of this paper, we always assume that the indices under discus-
sion arelogical.

By this correspondence, the length of a logical index I, denoted by len(l), is de-
fined as the length of the path corresponding to the index. For convenience, an index |
corresponding to path Aj.Ay.A, is sometimes denoted by 1(A1A7 ... Ay).

In this paper, let 3 denote the set of all available logical indices. We will always
assume that all indices in 9 correspond to different paths for the following reason:
obviously, it makes no sense to maintain two path indices or two nested indices for the
same path. It might in exceptional cases be reasonable to maintain a nested index for a
path that is also covered by a (logical) path index. In this case, however, we assume
that execution of the nested index is always cheaper than execution of the logical path
index on the same path, thus we eliminate the logical path index from J. For example,
we define

9 ={12(BCDE), 12(ABC), 13(BC), 14(C)},

where |1 isanested index, |> and |4 are two logical path indices derived from a physi-
cal path index for path ABC, and I3 is a nested index. Note that we did not include the
logical path index for subpath BC, because it is already covered by the nested index.
We havelen(l1) = 4, len(lo) = 3, len(l3) = 2, and len(l4) = 1.

Given a query path P and an index 1(A1A2..A), if P(=1 + 1,]) = Ar.Ao. ... A we
say | matcheson P at position . If P = Aj.Ao./A we say | matcheson P.

4 Splitting Algorithm

For the purpose of comparison, this section presents a preliminary algorithm for the
selection of a query execution strategy. The algorithm is derived from [13]. Originally
the algorithm is applied to the index configuration problem, but it can be directly used
for the query execution strategy selection problem with a dlight modification.

The agorithm is organized in n steps: in the I step all subpaths of length | are
considered. For each subpath, P(i, i + | — 1) say, the algorithm considers the following
| + 2 strategies:

e Thefirst two strategies are forward and backward traversal.

e Thethird strategy is an indexed accessif an index in § matcheson P(i, i +1—1).

e Theremaining | — 1 strategies are obtained by splitting the subpath P(i, i + | — 1)
into two subpaths P(i, i + k) and P(i + k+ 1,i + | - 1), where 0 < k<1 —1. For
each split, the cost of the path P(i, i + 1 — 1) is given as the sum of the costs of
the two subpaths. Note that the cost of the two subpaths has already been eva-
luated at a previous step since their lengths are strictly lessthan 1.

In each step the most cost efficient of the | + 2 strategies is selected. Thus, in the nth
step the most cost efficient strategy for the whole path P is determined.

In the following, let 6! denote the cost of the most efficient query execution strate-
gy on subpath P(i, i +1 — 1) with length I. Thus, 89 is the cost of the most efficient
query execution strategy for the path P = P(Z, n).

routine splitting
1 { forl=1tondo
2 fori=1lton-1+1do

3 { findindex Iq € 9 matching on P(i, i +1-1)

4 if found then cost_index <— costigx(lg, i +1-1)

5 else cost_index <— o«

6 8! < min ({ costpq(i, i + | 1), costpwa(i, i + 1 —1), cost_index} U
{or+ okl 1= k<)

7 }

8 }

In the above algorithm, costwq(i, j) and costyug(i, j) represent the costs for evar
luating the query using forward and backward traversal on subpath P(i, j), and
costigx(lg. j) represents the cost of the indexed access where I matches on path P at
positionj.

When no backward traversal can be supported on subpath P(i, j), let costywg(i, j) =
o . Note that the assumption made in Section 9 on the computation of the cost for
backward traversal is satisfied in this algorithm since the costs for query execution
strategies for the subpaths of a path are aways calculated in advance.

Determining which index can match on P(i, j) will take average O(j — i) time for
symbol comparisons.

On the other hand, calculating the minimum for 6! (line 13) needs | + 2 steps for
comparisons. Thus, the total average time cost of the above algorithmis

O(il(n — I)) +O(i(n -1+ 1)) +O(zn:(l +2)(n—1+ 1)) ()]

I=1

where the first term is the cost for index matching done in line 11, the second the cost
for calculating costiq(i, j) and costywg(i, j), and the third the cost for calculating the
minimum donein line 13. Clearly, expression (6) is equal to O(nd).

5 Right-to-Left Matching Algorithm

In this section we present an algorithm by right-to-left matching, that is similar to the
dynamic programming strategy used for example by the rule-based Volcano query op-
timizer generator [17] for obtaining optimal plans. The idea of the algorithm is to re-
cursively determine the query execution strategies with the minimal cost on the sub-
paths P(i, n), 1 < i < n. Finaly, the optimal query execution strategy can be
generated on the path P = P(1, n).

For a given query path P = A1.Ao.A,, we create an array, a[l .. n], to perform
index matching, where each entry afi] (1 < i < n) isarecord consisting of the fol-
lowing items:

e a[i].cost: The cost of the optimal query strategy on path P(i, n);

o ali].strategy e {indexed access, forward traversal, backward traversal}:
The query strategy chosen for the left-most subquery of the optimal query strat-
egy for P(i, n);

e a[i].subscript: The subscript of the index Iq which is chosen for the left-most
subquery of the optimal query strategy for P(i, n), when a[i].strategy = in-
dexed access,

e g[i].position: The position j of the subpath P(i, j) which corresponds to the | eft-
most subquery (forward or backward traversal) of the optimal query strategy on
path P(i, n), when a[i].strategy € {forward_traversal, backward_traversal}.

The following routine match; traverses P from right to left in order to perform the
minimal cost matching. Initially, before the call of matchy, let afi].cost = « for1 < i
< n.

routine matchs()
1 { fori=ndowntoldo

2 { find al possible indices lgp 1oy 1o matching on P at position i
3 foreach above matched index I do idx_match(i, q)

4 for k=i downto 1 do nonidx_match(k, i)

5 }

6 }

In the above routine, two subroutines are invoked: subroutine idx_match(i, q) de-
termines the cost of a subquery when an indexed access by Iq matching on P at posi-
tioni is considered; subroutine nonidx_match(k, i) determines the cost of the subquery
when the forward or backward traversal on subpath P(k, i) is considered.

subroutine idx_match(i, q)
1 { new_cost<ali+1].cost+costgx(lg,i) /* assumeherea[n+1].cost=0*/
2 k<i-len(lg) +1
if a[k].cost > new_cost then
{ a[K].cost < new_cost
a[k].strategy < indexed_access
alK].subscript < g

o J O U1 B W

}

In the above algorithm, function costigx(lg, i) returns the retrieval cost of indexed
access when index lq matches on P at position i.

subroutine nonidx_match(k, i)

1 { cost_fwd < costpg(k, i)

2 cost_bwd <— costpwg(k, i)

3 new_cost <— min{ cost_fwd, cost_bwd} + a[i + 1].cost
[* assume here a[n + 1].cost = 0 */

4 if a[K].cost > new_cost then

5 { a[k].cost <~ new_cost

6 alK] .strategy <— if cost_fwd < cost_bwd then forward_traversal
else backward_traversal

7 afk].position < i

8 }

9 }

In routine matchy, we have to determine all possible indices matching on path P at
position i (line 2). Thus we have to check all indices of length less than i. This needs
average | 9i | /2 times for symbol comparisons, where J; isthe set of indices| in J such
that len(l) < i.

Let Nipx denote the total number of invocations of subroutine idx_match. It is
easy to check that Npx < n(n + 1)/2, where n(n + 1)/2 is the number of subpaths of

P. In genera Nipx << n(n + 1)/2, as not for every subpath an index exists. On the
other hand, the number of invocations of subroutine nonidx_matchisn(n + 1)/2.

As both subroutines idx_match and nonidx_match can be executed in constant
time, let Ggxmatch ad Ghonidxmatch denote the corresponding time costs. The average
time cost of matchy is

i=1

Csym cmp - (z [9i] /2) + Gidxmatch'NiDx + Cronidxmatch-N(n + 1)/2 ©)

where Cym cmp isthetime cost for a symbol comparison.

In a large OODBS, the set of indices 9 can be very large, so that the value
Z;Ll |9;| /2 can be very large too. Thus, in realistic applications, where n is between
1 and 10, the value of expression (7) would be mainly determined by the first term for
alarge set 9. In the next section, we will present an improvement such that the time
cost is fully independent of 9.

Once the above minimal cost matching is performed, the optimal execution strate-
gy can be obtained by a new routine output_query_strategy which traverses the array
ain the left-to-right order.

routine output_query_strategy()

1 { i<1

2 whilei <ndo

3 if ali].strategy = indexed_access then

4 { output theindex la[}subscript

5 i < i+ len(lafi).subscript)

6 }

7 else /*a[i].strategy = forward_traversal or backward_traversal */
8 { output forward (or backward) traversal for path P(i, a[i].position)
9 i < ali].position + 1

10 }

11 }

12}

Clearly, the time cost of the above routine is O(n).

6 Efficient Index Matching Algorithm

In this section we present an improvement to further reduce the time cost of routine
match;. More concretely, we want to reduce the time cost of finding all indices
matching on path P a some positions. As indicated in (7), this cost is
Coym_cmp(S11 19,1/2).

The agorithm we suggest is based on the Aho-Corasick multiple-keyword pat-
tern-matching algorithm [12]. First consider the problem of finding all substrings of
an input string that are contained in a given set of keywords. The essence of the Aho-
Corasick algorithm isto construct atrie [11] from the set of keywords, convert thetrie

into a pattern-matching automaton, and then use the pattern-matching automaton to
perform aparallel search for the keywords in the input string.

Let K be the set of keywords. Thetrieis built by first making a root node and then,
for each keyword in K, creating a path from the root to a node whose branch labels
spell out the keyword. Each node of the trie is thus uniquely characterized by the se-
guence of symbols on the branch labels of the path from the root to that node. An
example of atrieis shown asfollowsfor the set K = { BCDE, ABC, BC, C}:

A B C
e e — —>eo
B
'\ o 5 £

The pattern-matching automaton is constructed from the trie. The states of the autom-
aton are the nodes of the trie; the start state is the root and the accepting states are
those corresponding to complete keywords. There is atransition from state o1 to o2 on
input character c if there is a branch in the trie labeled ¢ from node o1 to node oo.
Furthermore, we add a transition from the start state to itself on every input character
that is not the first character of a keyword.

The pattern-matching automaton has a failure function for every state other than
the start state. The failure function for a state characterized by a string u is a pointer to
the state characterized by the longest prefix of some keyword in K that is also a proper
suffix of u.

Both the trie and the pattern-matching automaton can be constructed in time lin-
early proportional to the sum of the lengths of the keywords in K. The resulting pat-
tern-matching automaton can be run on an input string x in time linearly proportional
to the length of x, independent of the size of K.

This algorithm can be directly applied for the query strategy decision agorithm by
noticing that each index can be characterized by a path-string (each symbol in the
string stands for a globally identified attribute). Using the Aho-Corasick algorithm,
we can construct a pattern-matching automaton to match the path-stringsin parallel.

Fig. 3 shows the pattern-matching automaton corresponding to the set of path-
strings and their corresponding indices from our example given in Section 10. State 0
isthe start state and the double-circled states are accepting. In this automaton the fail-
ure function for state 2 pointsto state 4, for state 3 to state 5, and for all other statesto
state 0; the failure functions that do not point to state O are shown as dashed lines. At
each accepting state, we also know which keywords and which indices have been rec-
ognized. For example, at state 3 the recognized indices are |, I3, and 14; at state 7 the
recognized index is|1.

Let succ(o, a) denote the state reached from the state o on input symbol a by the
automaton. For example, in the automaton shown in Fig. 3, succ(4, C) = 5, succ(4, D)
=0, and succ(3, D) = 6.

By means of the pattern-matching automaton, the query strategy decision algo-
rithm can be processed more efficiently. Recall that, in the algorithm matchy, the
array a1 .. n] corresponding to a query path P = A1.A.A is created where each

A @ B//@ c//
/,// E 12,13, 14
@‘ c .‘ D ® E
I3, 14 I
C

I4

Fig. 1 The pattern-matching automaton for the set of indices
9 ={11(BCDE), 12(ABC), 13(BC), 14(C)}

entry afi], 1 < i < n,isarecord. The following routine match, performs an efficient
index matching, based on the same array a but the entry a[i] has an additional item:

o a[i].stateto indicate the state of the automaton after it visits [i].

The following routine matchy will first traverse query path P to assign a state to each
entry of ain the left-to-right order, and then perform the minimal cost matching in the
right-to-left order.

Initially, let ali].state= 0 and g[i].cost = o« for 1 < i < nbefore match, iscalled.

routine matchy()
1 { a[1].state « succ(0, A1)
2 for i =2tondo a[i].state « succ(ali—1].state, A)
for i =ndownto 1 do
{ if ai].stateis accepting then
foreach index Iy recognized at a[i].state do idx_match(i, q)
for k=i downto 1 do nonidx_match(k, i)

o J O U1 B W

}

According to [12], the number of state transitions (including the failure state tran-
sitions) is not greater than 2n. Thus, the time cost is matchy is

Giransition2n + Gidxmatch-NiDx + Cronidxmatch-n(n+ 1) / 2 4)

where Gyansition 1S the cost of state transition, Cgxmatch @nd Chonidxmatch are the costs
of executing functionsidx_match and nonidx_match.

Comparing expression (8) to (7), the time cost of matchy isin general reduced es-
sentially in (8), since the term Cgym cmp: (D11 [9;1/2) in (7) has been replaced by
term Gyansition-2n = O(n) in (8). Thus, the time cost of routine matchy is O(n?) and is
completely independent of the structure of J.

For example, consider the query path P = A.B.C.D.E.F. Based on the set 9 and the
corresponding automaton as given in Fig. 3, applying matchy() yields the values at
each entry shown in Fig. 4.

1 2 3 45 6 1 2 3 456

1/1|2|3|4|5 |6 1 o | o

2 11213|4 |5 2 00| | | oo o

3 1123 |4 3 ®| ®| w|ow

4 123 4 ©| o x

5 12 5 o | 0o

6 1 6 °°

(8) Table of costpg (b) Table of costyyg
costix(11,5)=

costigx(12,:3)= !
2 costigx(13,3)=

2 l costigx(14,3)=

A B e D E F
a[1): a2 a3 al4]: a5 a[6e):
state=1 state = 2 state =3 state =6 state =7 state=0
(accepting) (accepting)
cost =3 cost =2 cost=4 cost=3 cost =2 cost=1
strategy = B. |strategy = 1. | strategy=F. |strategy=F. |strategy=F. | strategy =
position= 1 |subscript=1 | position=6 |position=6 | position=6 |F.
position = 6
backward Indexed access by 11 forward
traversal traversal

Fig. 2 Pattern-matching found by routine match,

In Fig. 4, we see that the cheapest cost at entry a[1] is 3; by the routine out-
put_query strategy described in Section 12 the optimal query strategy in the right-to-
left order is

(a) forward traversal on subpath P(6, 6) = F,
(b) indexed access on subpath P(2, 5) = B.C.D.E, and
(c) backward traversal on subpath P(1, 1) = A.

Building the pattern-matching automaton leads to an additional overhead. However,
the pattern-matching automaton must be rebuilt only when index structures are
changed, i.e. indices are added to or deleted from J. In general the frequency of updat-
ing the index structures is very low in comparison to the frequency of queries. Thus,
the benefits of introducing the pattern-matching automaton are greater than the cost of
the maintenance of the pattern-matching automaton.

7 Conclusions

We have presented an efficient algorithm for determining the optimal execution strat-
egy for path queries in OODBSs. We adopted the Aho-Corasick multiple-keyword

pattern-matching algorithm and combined it with a right-to-left matching strategy for
obtaining the optimal plan. The time-efficiency of our algorithm is independent of the
set of indices and achieves time complexity O(n?) in the length n of the path query.
The paper provides a careful analysis of the complexity of the problem. This analysis
shows that for moderate path lengths the crucial factor for time complexity of our
problem is in large databases the cardinality of the set of available indices. By elimi-
nating the dependency on this we can avoid the crucia bottleneck.

This technique covers an important aspect of declarative access to object-oriented
databases and thus complements other query optimization techniques for declarative
object-oriented query languages. An open issue is to extend this technique to query
trees, i.e. queries that contain multiple predicates on paths. We consider this to be an
extremely hard problem, because in this case the number of alternative query strate-
giesis combinatorially exploding.

References

1. ABERER, K. AND FIsCHER, G. Semantic Query Optimization for Methods in Ob-
ject-Oriented Database Systems. Proc. of the 11t ICDE, 1995.

2. AHO, A.V., HorcrorT, J, AND ULLMAN, J. D. Data Structures and Algorithms, Addi-
son-\Wesley Publishing Company.

3. AHo, A. V. aND Corasick, M. J. Efficient string matching: An aid to bibliographic
search. Comm. of ACM 18,6, June 1975.

4. BERTINO, E. Index Configuration in Object-Oriented Databases. VLDB Journal 3,3
1994.

5. BERTINO, E. AND GUGLIELMINA. Path-Index: An Approach to the Efficient Execu-
tion of Object-Oriented Queries. Data & Knowledge Enginerring 10, North-Hol-
land, 1993.

6. CHAWATHE, S. S, CHEN M-S, AND YU, P S. On Index Selection Schemes for Nested
Object Hierarchies. Proc. of the 20t"VLDB, 1994.

7. CHOENNI, S, BERTINO, E,, BLANKEN, H. M., AND CHANG, T. Onthe Selection of Opti-
mal Index Configuration in OO Databases. Proc. of the 10th ICDE, 1994.

8. GRAEFE, G. AND McKENNA W. J. Extensibility and Search Efficiency in the Volcano
Optimizer Generator, Proc of the 9t ICDE, 1993.

9. KEMPER, A., AND MOERKOTTE, G. Advanced Query Processing in Object Bases
Using Access Support Relations, Proc. of the 16t VLDB, 1990.

