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Abstract: The authors present a novel artificial-neural-network architecture with on-chip learning
capability. The issue of straightforward design-flow integration of an autonomous unit is addressed
with a mixed analogue-digital approach, by implementing a charge-based artificial neural network
which interacts with digital control and processing units. The circuit architecture and design-flow
approach for the case of a Hamming network performing pixel-pattern recognition are described.

1 Introduction

The ability of artificial neural networks (ANNs) to acquire
knowledge of their surrounding environment and adapt to
it, as well as their use of a high degree of computing paral-
lelism, makes them very efficient in many application fields
including process and guality control, consumer products,
optical character and speech recognition, and complex fore-
casting tasks, among many others [1].

Silicon implementation of ANNs as an integrated circhit
(IC) [2] aims at providing a final product with desirable
low-area, low-power and low-cost properties. Several
purely analogue ICs, most of them belonging to the charge-
based or current-based families, have been developed to
meet the criteria of minimal area and fast throughput.
However, the main drawbacks of analogue systems include
sensitivity to ambient noise and to temperature, as well as
the lack in efficient automated synthesis methods and tools.
On the other hand, purely digital realisations have the
advantage of a limited but well defined precision that is
given by the quantification of all neuron parameters. One
main characteristic of purely digital realisations is their
straightforward design-flow; some realisations start from a
high-level-hardware-language description such as VHDL,
to be synthesised into a standard-cell-based architecture or
an FPGA. The extensive reuse of precharacterised mod-
ules, whether these be VHDL-based descriptions or mask
layouts, is yet another possible solution to speeding up the
IC development process.

Combining the advantages of both analogue and digital
realisations into a novel mixed-mode architecture is the
purpose of the implementation described in this paper. It
focuses on developing a simple design-flow aiming at the
integration of artificial neural networks with on-chip leam-
ing into an autonomous and easily reconfigurable inte-
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grated-circuit architecture. The silicon mtegration of a
Hamming network [3] of 20 charge-based neurons, interact-
ing with a purely digital unit to which the on-chip-learning
and circuit control tasks are dedicated is shown.

2  Circuit architecture and its design-flow

2.1 Main building blocks

The overall circuit architecture is divided into two main
parts with regard to their operating modes, i.e. analogue
and digital. The analogue ANN unit executes the neural-
function processing based on a charge-based circuit struc-
ture; it is composed of a 20-neuron layer, each with 10-bit
vector inputs. The winner-take-all (WTA) [4] unit is
devoted to the task of selecting one neuron as the winner
on the criterion of best degree of matching between the
stored pixel pattern and the current input vector. On the
other hand, the error-correction unit (OLU), the circuit-
control (CCU) and clock-generator (CGU) units perform
purely digital operations (seeFig. 1).
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This mixed analogue-digital architecture is consistent
with the objectives of constructing a flexible, straightfor-
ward design-flow with reusability properties, and of
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addressing the issues of efficient and compact design. The
ANN operates in the analogue domain and thus inherits
most of the advantages associated with it, especially speed
of neural function execution and compact design. All the
digital parts, on the other hand, were designed, simulated
and then synthesised from a VHDL high-level hardware
language description. This design-flow significantly simpli-
fies such issues as fast prototyping of a new algorithm into
an IC, fast integration of the selected architecture, and easy
layout floorplanning. A dedicated multipurpose memory
unit (MMU) which has a scan-path architecture with paral-
lel and serial read/write ability is devoted to the task of
loading the initial weights and observing the new processed
weights. This unit is an operating and test structure that
together with others allow full testability and observability
of the IC.

2.2 Controi signals and data flow

The CCU is the master circuit controller; Le. all other units
are subordinated to this unit. Its tasks mainly include the
synchronisation of all processing units among themselves
and with the circuit supervisor, as well as the input/output
protocol implementation. The control and dataflow are
represented in Fig. 2. Note that the ANN and WTA are
completely controlled by the CGU which has the ability of
generating the clock signals ¢ — ¢, asynchronously from
the circuit master clock.

The external dataflow consists of presenting new data on
the START event; and sampling the result on the DONE
event. The internal dataflow is simplified; no complex data-
flow control structure is required as any new vector is proc-
essed immediately by the ANN. These data are lost at the
end of a cycle since no internal framing is available.

2.3 Circuit environment
The developed architecture needs to interact with a supervi-
sor to download several process-control and data signals in
order to allow proper functioning. This global control sys-
tem may either be a dedicated microcontroller, for an
embedded microsystem, or a piece of contrel software driv-
ing a conventional microprocessor in a computer architec-
ture. This requirement obviously reduces the autonomy of
the overall circuit architecture and assumes that it has to be
included in a complete system such as a computer board.
Nevertheless, the ability to modify some algorithmic
parameters and decision criteria in real time significantly
improves the efficiency of the system.

For example, the learning rate parameter 1 has a signifi-
cant influence on the ANN convergence and on its ability

to properly acquire knowledge. As stated in Section 4, its
value may be downloaded into the IC at any time. A signal
indicating whether or not error correction was applied dur-
ing the last cycle is sent to the supervisor in order to keep
the decision of accepting or rejecting the convergence con-
dition outside the chip. Following the same idea, the selec-
tion of the neuron to be trained is also carried out by the
supervisor. The threshold value also has to be produced
externally in the form of an analogue voltage V,,

All of these features could easily be integrated into a fully
autonomous version of the developed architecture which,
however, would result in loss of flexibility due to the
impossibility of modifying any parameters.

3 Mixed analogue—digital ANN architecture and
operation

3.1 ANN circuit architecture

A Hamming network is a two layer feedforward ANN
with the ability to classify noise-corrupted patterns. Its
internal architecture consists of a first layer of neurons per-
forming in parallel the Hamming distance of a m-bit digital
Input vector with # previously stored exemplar patterns —
this is the quantifier subnet; the second layer is devoted to
the selection of the winner neuron which is that with the
smallest Hamming distance to the input vector (see Fig. 3)
— this is the discriminator subnet. This neiwork performs
efficient classification for relatively low complexity, and
always converges to one of the previously stored combina-
tions.

The number of independent neurons n corresponds to
the number of patterns to be sotted out, and the number of
synapses m associated with each neuron corresponds to the
number of input-vector components.

For the realisation of the Hamming network, a modified
version of the charge-based circuit architecture first pre-
sented in [5] is used; this was originally designed with fixed
weights. In particular, the circuit architecture was modified
to allow simple programming of the input weights. Since
this paper is primarily focused on the overall system archi-
tecture, a detailed analysis of the charge-based quantifier
and discriminator subnets is not presented here. The funda-
mental circuit architecture of the capacitive Hamming net-
work is essentially identical to the fixed-weight classifier
circuit published earlier, the operation and limitations of
which were well documented in [S]. It has also been experi-
mentally demonstrated earlier that charge-based circuit
architectures offer the advantages of high integration den-
sity, high speed and low power dissipation, while sensitivity
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Fig.3 General structure and functional description of a Harming network

limitations (discriminator offset) that may stem from cir-
cuit/device mismatch still allow a relatively large input vec-
tor size [5, 6]. For a detailed description and electrical
analysis of the charge-based capacitive Hamming network
architecture, the reader is referred to [3].

Each charge-based synapse is composed of four binary
weighted capacitors as well as four memory latches to sup-
port programmability of the device. The capacitor values
associated with each synapse are chosen as C, = 2'C,,
where n = 0, ... , 3 and C, is unit capacitance. Thus the
modified configurable circuit architecture of the charge-
based Hamming network allows four-bit weight program-
ming.

3.2 ANN circuit operation

The circuit operates in two distinct modes (forward-
processing mode and training mode) which can be selected
by an external triggering signal. The circuit operates in the
following sequence when in forward-processing mode {also
called recall mode).

* Initialisation phase: the initial weights (or newly proc-
essed weights) are downloaded into the internal synaptic
memory.

* Quantification phase: the mput vector is applied.
Depending on the programmed weight values, all dendritic
voltages in the ANN structure assume their new level.

+ Discrimination phase: the WTA processes to winner
selection. The result may be sampled when convergence of
the WTA is reached.

The circuit controller flags the availability of a new maxi-
mum-likelihood-classification result. All these steps repeat
every time a new forward processing pass is required under
the control of the circuit-supervisor unit.

The circuit hag to be trained in order to acquire experi-
ence of the patterns to be sorted out. This happens during
the training mode which is divided into two passes: one for-
ward pass and one backpropagation pass {error correction

pass).
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+ Forward pass: the training forward pass is identical to
the nermal forward-processing mode, with the exception
that only one neuron is activated at a time (each neuron is
trained separately). The neuron to be trained is selected by
the supervisor and is activated through a forward-process-
ing pass using the training pattern, while all other neurons
are kept in idle mode to prevent undesired interaction.

» Back-propagation pass: given the current input vector,
the current processing weights and the binary result of the
forward pass, the circuit controller activates the OLU, the
digital unit which computes the weight values the ANN
will have in the next cycle, to process the learning algo-
rithm, The OLU computes the new weights to be down-
loaded into the synaptic memory. The circuit controller
flags the end of the cycle to the outside, and indicates
whether or not error correction was to be applied during
the current training pass. The circuit supervisor may then
decide on the necessity of a refining training pass with the
same or another threshold value, or to train another neu-
ron because convergence was satisfactorily achieved.

4  Learning algorithm and algorithmic
considerations

Hardware implementations of ANNs are typically subject
to restrictions in terms of area, power and time which may
complicate the realisation of a chosen learning algorithm.
The so-called hardware-friendly algorithms [7] are intended
to yield a simple hardware realisation, yet also achieve a
high degree of efficiency despite limited precision of com-
putation, approximation of the implied functions, and per-
turbing effects of quantisation.

The training algorithm was chosen as a hardware-
friendly adaptation (eqn. 2) of the error-correction learning
algorithm (eqn. 1) [8]:

w(n + 1) = win) + n{dn) —y(n)}le(n) 1)

Here w stands for the weight vector, x for the input vector,
d is the expected output and y the actual neuron output
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result, 77 is the learning rate, # is the time increment.
win+1) = wn) +¢
where
{=nldn) —yn)en) ifz; =1
or
(=0ifz; =0 (2)

The use of a WTA unit restricts the input vector x to be
purely binary; thus all of its components belong (o the
binary set {0, 1}. This fact, together with the hard-limiting
activation function in the ANN, produces a purely binary
result to the {d(r) — y(n}}x(xn) operation. Hence, the inftu-
ence of the 7 parameter is enhanced s it remains the only
nonbinary parameter to be multiplied with one of the logi-
cal values {0, 1}. Thus the system was designed so as to
allow the £ value to be changed at any time by the supervi-
sor controller.

Prior to the design of the unit, C simulations were run to
validate the hardware-oriented algorithms. A specific simu-
lation tool was developed in order to produce a realistic
high-level characterisation, which is based on the model of
a neuron that optimally reproduces the analogue behaviour
of the real implementation in the integer domain. The sim-
ulations were run on a network consisting of nine neurons
with 9-bit vectors to classify. The small size of the network
does not in any way affect the quality of the results;
expanding the network to a larger one would result in a
longer delay to reach convergence (in a general case). The
training set and simulation parameters can be seen in

Fig. 4.
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All these patierns were correctly classified

Some simulations were run to test the behaviour of the
network when confronted with unknown patterns, which
highlighted the efficiency of the network in generalising (see
Fig. 5).
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5 Realisation of the ANN integrated circuit

A test chip implementing the develeped architecture was
designed and realised in AMS (Austria Micro Systems)
CMOS 0.8y 2-poly technology [9, 10]. The layout can be
seen in Fig, 6. The die size is less than 13mm?; the func-
tional modules (ANN, WTA, CCU, CGU and OLU)
occupy less than Smm?. The number of pins is 100, several
pins being attributed to additional test structures.

Fig.6 AMicrophotograph of realised integrated eireuir

All operative units occupy an area of less than Smm? the overall die size is less than
13mny’, with & 100 PGA puckage. Several test structures snd test pins were imple-
mented 1o allow casy testability of the chip

The test features were integrated into the design so as to
make each main building element testable independently
from all others. As mentioned above, the multipurpose
memory unit is fully accessible in read/write mode, which
allows the weights to be read to be loaded by the ANN or
the OLU, or to be downloaded to check the computation
of the OLU. The binary result of the WTA output in for-
ward processing mode (is cwrrent presented patiern recog-
nised as being that stored in current trained neuron?) is also
fully accessible in read/write mode, which allows for testa-
bility of WTA and control of the OLU in test mode. The
WTA outputs arc all connected to output pins which
ensures full testability over the ANN and WTA. The rea-
son for observing all the WTA outputs lies in the internal
operation of the WTA that may produce a multiple winner
selection. The ANN and WTA can be tested independ-
ently; in this test mode all the driving-clock signals are pro-
vided by external means via the CLK DVR unit. Finally,
one single neuron with full externai access was integrated to
allow sensitivity and speed tests.

All of the major modules on chip were tested separately
to confirm their functionality. The digital error-correction
unit (OLU), crcuit-control unit (CCU), multipurpose
memory unit (MMU) and the clock-generator unit (CGU)
were tested using the HP82000 testing environment and
were found to be fully functional. Measurements were also
performed to verify the operation of the analogue ANN
and WTA modules. The WTA was found to operate cor-
rectly for all cases with a minimum Hamming distance of
two bits or more. Discrimination of a winner neuron was
found to become problematic in cases where the minimum
Hamming distance was only one bit, which indicates that
the unit weight capacitance of 17fF actually remains below
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the limit value dictated by the process-dependent quantifier
offset voltage. Extensive measurements for a complete
characterisation of the entire ANN architecture are contin-
uing.

The main effort was not put on developing a high-speed
architecture. Nevertheless, a speed of 4 x 109 inferences per
second is expected in forward processing mode with an
exfernal control. Internal control processing is limited by
the slowest clock signal to be produced by the CGU, by the
circuit master clock and by the control path, which makes
it difficult to evaluate. A rcalistic estimation gives an
expected speed of 100000 inferences per second with a
master circuit clock reaching [0MHz and an ANN driving
clock reaching 1 MHz.

6 Conclusions

The integration of a novel artificial neural network archi-
tecture has been demonstrated. The proposed mixed ana-
logue—digital realisation is based on an analogue ANN
block which interacts with a purely digital learning unit,
implementing the error-correction learning algorithm, as
well as the circuit-control part. The ANN is a Hamming
network including a first layer of charge-based neurcns
driving a WTA unil,

A test chip containing 20 ncurons of 10 synapses each
has been designed using an AMS CMOS 0.8 2-poly tech-
nology. It has an active area of less than Smum? for a die
size of 13mm?.

The general idea in this development was to establish a
valid design-flow for an ANN-based integrated circuit to
be reusable in some other applications, rather than focus
on integrating a high-throughput processing unit.

[EE Proc.-Clrewits Devices Sypst., Vol 146, No. 6, December 1999

The mixed analogue—digital architecture presented in this
work can be used i applications where the main focus is
the on-chip learning ability of the ANN rather than a high
processing/inference capability. This includes all autono-
mous systems with relatively slow time constants but a very
long lifetime. Possible applications may be found in medi-
cal engineering, automotive engineering and consumer
products.
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